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ABSTRACT 

The U.S. Navy seeks to reduce costs associated with anti-submarine warfare 

(ASW) operations by exploring the use of unmanned surface vehicles (USVs). Currently, 

the process of finding submarines tends to be tedious and manpower intensive due to the 

high volume of acoustic data with limited means to filter for valuable information. 

Therefore, innovative software frameworks are required to transition from a “one-to-

many” to a “many-to-one” USV/human interaction model. By examining potential 

software frameworks, this thesis addresses many of the benefits and challenges inherent 

to using USVs in dynamic maritime environments. Furthermore, this evaluation provides 

a building block for the continued development of USV software systems.  
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I. INTRODUCTION 

A. OVERVIEW / MOTIVATION  

Autonomous systems appear to be in vogue, both in commercial and defense 

sectors. News headlines capture the accomplishments and challenges faced by 

autonomous systems every day. In this environment, the U.S. Navy seeks to better 

understand this domain and how it can be apply knowledge gained to the problem of 

making Anti-Submarine Warfare (ASW) less “dull, dirty, and/or dangerous” to human 

operators.  

Eliminating the adversary from the equation for a moment, it should be stated that 

the maritime environment is a challenging domain for anyone who hopes to operate in it. 

From time immemorial, mariners have been battling the effects of salt, water, wind, and 

sun on machines, and the effects of distance and motion on people. No matter the 

century, or the technology, these factors are constantly at work—to the detriment of the 

mariner. It is then the challenge for an architect or designer to try to mitigate these forces, 

and to ease the life of the people who put to sea. The notion applies equally as well to the 

would-be engineer who is designing a system, hardware or software, to operate in this 

domain. Then, to make the task even more challenging, add in the assumption that 

someone else is trying to sink your design or halt your mission. 

There is little published material on autonomous vehicle systems that operate on 

the water’s surface in support of finding submarines hidden beneath. Additionally, there 

is a lack of open discussion about software systems that could be used to control these 

systems to make the jobs of the human operators easier.  

B. RESEARCH QUESTIONS  

This thesis sets out to answer the following questions: 

 What kinds of interactions will USVs need to have with other platforms in 
Maritime Shield and Protect Passage ASW and what degree of human 
operator control will they need?  
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 Which aspects of these missions could the USVs carry out autonomously 
and what kind of autonomous decisions will be needed to carry out the 
missions more effectively than with current manned platforms? 

 How does one determine the value added by autonomy and decide which 
aspects of the USV mission would benefit most from automation? 

C. LITERATURE REVIEW  

The first job of any software architect is to understand the requirements of the 

stakeholders. Sometimes these requirements are explicitly stated, but most of the time, 

they are implied. However, being able to distill a customer’s requirements into a list of 

bullets is not sufficient and is only the initial step. The next step is to actually begin the 

design phase where the developer will attempt to craft solutions that meet the needs of 

the customer. To aid in this process, the developer should become familiar with the 

domain(s) that their solution is being designed for; in the case of this study, the domain is 

ASW with USVs, which includes the maritime environment. To this end, it is instructive 

to begin with a brief review of the literature that shaped the trajectory and understating of 

the research domain. 

In 2007, the U.S. Navy published its vision for future unmanned systems in [1], 

which outlined the potential use of USVs in support of the ASW mission. In 2013, the 

RAND Corporation took the idea further and suggested in [2] specific sub-categories of 

ASW missions that a USV might perform well in. These two publications serve as the 

launch pad for this research study. 

To better understand the role of artificial intelligence in designing autonomous 

systems, S. Russell and P. Norvig jointly authored a textbook [3] that covers many of the 

fundamentals of modern AI. Additionally, the anthology of essays titled Human-Robot 

Interactions in Future Military Operations and edited by M. Barnes and F. Jentsch 

contains a number of essays that discuss human-robot interactions. The biggest takeaway 

is in [4], which states a theoretically ideal mix of humans to robots for remote operations. 

The term “robot” and “autonomous system” are often used synonymously, and for most 

applications, the differences in terms are negligible. Many lessons that the field of 

robotics has learned can easily be applied to the broader field of autonomous systems. 
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Furthermore, the book by B. Mishra titled Autonomous System: A Beginners Guide to 

Design their Own Autonomous System from a Scratch discusses how to build an 

autonomous system/robot from the ground up, the discussion on artificial neural nets 

(ANN) influencing this project’s design. The anthology titled Autonomous Vehicles: 

Intelligent Transport Systems and Smart Technologies addresses many topics on the 

challenges of designing a hardware/software interface supporting autonomy. 

From a more philosophical perspective, the paper by A. Bouchard and R. Tatum 

titled “Verification of Autonomous Systems: Challenges of the Present and Areas for 

Exploration” discusses a shift in the way of thinking about autonomous systems. 

Specifically, they echo many industry leaders that say that Levels of Autonomy, as a 

concept, is dead. They propose instead to see autonomous vehicles as a set of skills and 

abilities. These two concepts form a lens in which to view the various functions of an 

unmanned system (UMS).  

In his 2007 master’s thesis [5], A. Oliveira outlines the software architecture for 

an oceanographic research USV. The paper may be a little technical for a wider audience, 

but many of the ideas he discusses are applicable to any future USVs. In his thesis, he 

outlines the benefits to using a Linux based operating system (OS) over other operating 

systems like Windows. Also, he recommends avoiding the use of threaded or multi-

threaded programs and instead recommends using single-thread/single process programs. 

His reasoning is clearly outlined and served as an influence to my design.  

Finally, Professor. Berzins’s class at NPS as well as the book [6] he co-wrote with 

Professor Luqi proved invaluable to understanding the software architecture required by 

autonomous systems. This was further augmented with R. Hanmar’s Pattern-Oriented 

Software Architecture for Dummies, which discusses different approaches to designing 

software, as well as E. Evans’s Domain-Driven Design: Tackling Complexity in the Heart 

of Software, which talks about designing software in the context of a specific knowledge 

domain like ASW. Both works proved to be valuable tools in channeling my vision for 

the ASW USV’s software.  
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D. THESIS ORGANIZATION 

The remainder of this document is organized in the following manner:  

Chapter II is a primer on anti-submarine warfare distilled from the U.S. Navy’s 

foremost-unclassified publication on acoustics known as the RP-33, with appropriate 

context informed by my experience as a qualified aircraft and mission commander in the 

Sikorsky SH-60B “Bravo” Seahawk multi-mission helicopter. In order to develop and 

employ a useful USV, it is important to understand the environment it will operate in, 

other systems that it will support and complement, and the threats it will attempt to detect 

or defeat. 

Chapter III focuses on introducing the reader to concepts in automation and 

artificial intelligence (AI). The mere mention of AI conjures up ideas of cyborgs 

attempting world domination; however, AI is really nothing more than very cleaver 

programs that mimic certain human behaviors. AI is important when considering USVs 

and ASW because it is difficult to “brute-force” detection of submarines and predict their 

actions. Well thought out AI agents can help reduce the complexity of a situation and can 

help focus a human on tasks that are more difficult for a computer to handle.  

Chapter IV lays out a framework for the software architecture for an ASW USV. 

This chapter discusses challenges, assumptions, and benefits to developing a software 

system to handle multiple USVs.  

Chapter V discusses critical though peripheral issues to the USV software 

development. Finally, Chapter VI brings it together with concluding thoughts and 

recommendations for future work. 
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II. BACKGROUND 

Anti-Submarine Warfare is best thought of as both an art and a science. It is a 

science because it is organized, systematic, based on proven research and theories, and, 

for the most part, is largely repeatable. In order to further support this point, consider the 

amount of knowledge, equipment, and training that is required to successfully conduct 

operations in this environment. It is an art because even with dedicated study of all the 

tactics, techniques, and procedures (TTPs) it is still a game of chance impacted by many 

factors, with the enemy playing a significant role. In warfare it is said that the enemy 

“gets a vote,” an observation of the reality that not all factors are knowable, and so one 

must therefore be prepared for the unexpected. To inform later chapters, the following 

sections attempt to set a baseline of understanding.  

A. THE SUBMARINE—A (VERY) BRIEF HISTORY 

The modern military submarine can trace its roots back to 1776 and David 

Bushnell’s Turtle. It was intended to approach a ship unobserved, drill a hole in the 

bottom of the hull, leave an explosive charge, and then evacuate before detonation. Due 

to some critical design flaws, the plan failed, but the concept persisted as noted in [7]. 

The submarine gained prominence and notoriety during both of the previous World Wars 

where the Germans used it to great affect at slowing, but not stopping, the stream of men 

and material from the United States to its allies. Today, the submarine retains its historic 

mission of striking commercial shipping and military targets, as well as performing long 

range strike warfare and special operations. 

1. Purpose 

The main purpose of a Navy is power projection—both military and economic, 

with its chief effort to ensure that the Sea-Lines-of-Communication (SLOC) remain open 

for commerce and military movement. It is best to think of a SLOC as an imaginary line 

that departs one country and traces a route to another location, along which people, 

goods, services, and ideas may transit. To cut these routes, or to make them prohibitively 

expensive, can have devastating consequences to those on both ends of the SLOC.  
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A submarine’s primary purpose is to disrupt the SLOCs by threating or destroying 

shipping. When trade is disrupted, it can have severe consequences—locally, regionally, 

and globally. For a more detailed history on submarines, consult [7].  

2. Operation 

A submarine is a stealth asset, capable of disappearing beneath the waves to strike 

out at surface or sub-surface ships, launch long range missile strikes, conduct infiltration 

operations, or to conduct espionage. Unlike surface ships, a sub cannot be easily 

monitored or tracked, and so its intentions are usually unknown. This is what makes a sub 

such a good deterrent—its ability to strike first without notice. Additionally, this 

particular advantage is a major risk for an opponent and will usually result in the 

submarine being a higher priority target for prosecution and neutralization. 

According to Part II, Section 3, Article 20 of the  United Nations Convention on 

the Law of the Sea (UNCLOS), a submarine that is transiting innocently MUST do so on 

the surface while showing their flag while in “Territorial Waters” [8]. This should be 

interpreted as such: in failing to comply with these requirements, a submarine is 

purposefully being evasive and is likely conducting operations that the coastal nation 

would find aggressive or even hostile. This thought can be applied to the open ocean, or 

“International Waters/High Seas,” to include the contiguous zones as well. If a submarine 

wants to be “friendly” it will do so on the surface as this nullifies his advantages and 

shows that he is not as much of a threat. Conversely, if a submarine is detected, and does 

not surface to show good will, then it can be assumed that the submarine may have 

ulterior motives, and needs to be treated with suspicion. Consider this analogy: while it 

may be against the laws of some jurisdictions to wear masks or disguises, it is not fully 

prohibited. However, when asked to remove said articles by a member of law 

enforcement, and then an individual refuses to comply, and then their motives are 

immediately questioned. Was their intent to be disguised in the commission of a crime, or 

are they suspected of crimes and were trying to conceal their identity to avoid arrest? 

This is a fundamental concept in ASW: if a submarine is trying to de-escalate 

tensions, then they would do so on the surface, or would otherwise establish 
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communications. Failure to do so implies that they do not want to be found. This is why 

searching for submarines is referred to as “hunting” and why there exists processes called 

“kill chains” because like the criminal referred to above, the situation could turn 

aggressive quickly, and friendly forces might be required to use deadly force to subdue 

the would be assailant.  

B. THE UNDERWATER ACOUSTIC ENVIRONMENT  

The underwater acoustic environment is not a simple system, and entire books 

have been written trying to capture the precise nature of this dynamic domain. The 

following sections only include the very basics, and the dedicated scholar is encouraged 

to seek further information with a recommended starting point being the Naval 

Oceanographic Office’s (NAVOCEANO) Reference Publication 33, commonly referred 

to in the ASW business as “The RP-33.” 

1. Sound Waves 

The RP-33 states, “Sound originates as a wave motion produced by a vibrating 

source” that requires a medium like air or water for transmission. Sound waves have the 

same properties as other waveforms (e.g., electromagnetic waves) such as frequency, 

wavelength, amplitude, and speed. Sound will typically emit omnidirectionally from a 

sound source, but it can be hard to visualize this phenomenon; therefore, it is easier to 

think of sound as being a ray (like a light ray) being emitted from a source. If the medium 

was uniform, then the sound ray would travel a straight path until it was reflected off 

some surface. However, the ocean is far from uniform, and so sound has a tendency to 

travel in curved paths [9].  

2. Speed of Sound 

The speed of sound in water is approximately 1500 m/sec, with changes in speed 

being a function of water temperature, salinity, and pressure. These factors are highly 

variable depending on geographic location, season, time of day and depth [9]. 
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3. Sound Speed Profile (SSP) 

The sound speed profile is a graphic representation of the speed of sound in 

respect to temperature, depth (pressure), and to a lesser extent, salinity. See Figure 1. At 

shallow depths (< 1500m), temperature plays the most significant role in affecting the 

SSP. However, at approximately 1500m, temperature decreases slowly or becomes 

isothermal for increasing depth, and yields to pressure for dominance in affecting the 

SSP. Generally speaking, when the rate of temperature change is greater than the rate of 

pressure change, then temperature will be the dominant factor on the SSP. Specifically, as 

temperature decreases so too does the speed of sound. Conversely, when the rate of 

pressure change is greater than the rate of temperature change, pressure will be the 

dominant factor in calculating the SSP. Specifically, once the rate of temperature 

decrease slows or halts, pressure becomes dominant and the speed of sound will increase. 

A property known as depth excess, useful in predicting convergence zones (covered 

later), will occur when the speed of sound increases back to where it initially began to 

decrease. Salinity, for the most part, plays a minimal role in deep open-ocean 

environments. This is because most of the world’s oceans tend to be close (+/- 2 ppt) to 

the global average of 35 parts per thousand (ppt) of salt, so planners figure salinity to be 

relatively static. This assumption is not valid in shallow water or polar environments 

where the influx of fresh water may play a significant role on regional salinity [9]. 
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Figure 1.  Sound Speed (Velocity) Profile. Adapted from [9]. 

4. Sound Propagation 

As soon as a sound is created, its behavior is subject to the peculiarities of the 

medium it is being transmitted through. As previously mentioned, if the ocean were 

uniform then sound would travel in straight lines, but because it is not uniform, sound 

travels in seemingly curved paths. This is the result of refraction that is encapsulated in 

Snell’s Law. The RP-33 defines Snell’s Law as “a ray going from a region with one 

speed will have a different direction in a second region which has a different speed.” This 

concept can be applied multiple times over multiple layers or regions of water that hold 

uniform properties. It should be noted that, except in a vacuum, the refracted ray will 

bend towards areas of lower sound speed [10]. Therefore, the general observation is that 

sound generally travels away from areas that have a higher speed of sound, and will 

travel towards areas that have slower sound speeds leading to the appearance that sound 

travels in curved paths [9]. The basic mnemonic is higher away, lower towards.  
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a. Propagation Loss 

As sound waves travel through the ocean, the pressure of the sound wave 

diminishes, this is known as propagation loss. It is important to understand how pressure, 

energy, and sound intensity interact because it impacts the detection process. The lower 

the signal level, the harder it is to detect. The seven main factors that impact propagation 

loss are losses due to: spreading, absorption, scattering, the bottom, the surface, 

diffraction, and multi-path interference [9]. 

Spreading Loss: There are two main types of spreading loss, spherical and 

cylindrical. Spherical spreading loss can be thought of as the ideal or theoretical model 

for spreading loss where sound emits from a source in all directions without any 

constraints. Cylindrical is closer to reality where you have an upper (surface) and lower 

(bottom) boundary that contain sound energy. In the spherical model, sound intensity 

decreases by 6dB per distance from the source doubled. Cylindrical loss is slightly better 

at only a decrease of 3dB per distance doubled.  

Absorption Loss: As a sound wave travels from its source, some of the 

mechanical energy is converted into heat, which causes a loss of sound intensity. 

Generally speaking, absorption is proportional to the square of the frequency [9]. This 

means that lower frequencies will travel further, and higher frequencies will be absorbed 

sooner. 

Scattering Loss: Because a water column is not uniform and there will be many 

variations of temperature and salinity even in a fairly uniform layer, some energy will be 

refracted and reflected away from the main sound wave causing a general loss of 

intensity [9]. 

Bottom and Surface Loss: These two types of loss are related in that they are the 

result of the acoustic energy interacting with the edge of the medium (water). In the case 

of the bottom, it is the composition of the ocean floor, and in the case of the surface loss, 

it is wave action [9].  

Multi-path Interference: As rays of sound depart a source in different directions, 

they may eventually meet with one another. When these rays meet, they may either do so 
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constructively (increase in sound intensity) or destructively (decrease in sound intensity) 

depending on the difference in the lengths of the two paths [9]. 

b. Propagation Paths 

The RP-33 recognizes six different types of propagation paths. It is not necessary 

to cover all of them. The most important of the propagation paths for ASW in and around 

the battle group is direct path or “DP.” DP propagation is sound that has been emitted 

directly from its source that travels an “approximately straight-line path between sender 

and receiver” without being subject to signal loss or frequency shift due to interactions 

with the bottom or surface. If you have DP contact, your vessel of interest is close. It is 

also worth mentioning convergence zone or “CZ” propagation. When the ocean is deep 

enough to have a depth excess, and is free of obstructions, sound can travel for a very 

long distance. To give some perspective, the typical directional frequency analysis and 

recording (DIFAR) sonobuoy deployed from aircraft has a relatively short detection 

range of only a few thousand yards with DP contact. However, when CZs are possible 

due to depth excess, detection ranges may extend 30 Kyds to 60 Kyds (15 to 30 NM). In 

some regions, it is possible to have multiple CZs, so the true detection range could be 

extended even further. For example, if your acoustic prediction software estimated CZ 

contact to be possible out to four CZ, then one might be able to detect a submarine as far 

as 60 to 120 NM away. Depending on the use, this contact can be more beneficial than 

direct path as it provides the listener with advanced notice of an approaching submerged 

vessel [9]. This works both ways though, and a submarine may be able to detect the 

listener’s presence. 

5. Sources of Noise 

In ASW, as with many fields, it is important to separate signals from noise. To 

recognize when one has a signal, one has to discriminate the noise. The RP-33 classifies 

two types of noise: ambient and self. Ambient noise is that which is part of the 

environment independent of the actions and movements of the search platform. Ambient 

noise includes maritime traffic, melting/forming ice, biologics, and marine mammals. 

Self-noise covers everything caused or related to the search platform; examples include 
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machinery noise, propeller noise, hydrodynamic noise, and aircraft noise. Self-noise can 

interfere with the search platform’s instruments and give away the platform’s position to 

an enemy [9]. 

6. Deep Water versus Shallow Water  

In deep water, sound can travel a great distance before it is fully absorbed, which 

can allow a careful listener to detect a submarine. However, to fully exploit some of these 

properties requires sensors that can go deep enough to capture this information. When the 

depth excess is greater than 200 fathoms (1200 ft.) then there exists a strong (>80%) 

probability that CZ propagation is possible. Recall from the previous section that CZ 

propagation can be detected 15–30 NM from the source, and multiple CZs may exist [9]. 

A noisy submarine in deep water is a submarine that wants to be found. Between shallow 

and deep water, deep water is considered the easier environment. Shallow water is much 

more sensitive to the effects of weather, geography/topology, and changing temperatures 

and salinity. Additionally, to complicate matters, shallow water also contains the highest 

density of maritime traffic, which means that there is a lot of noise in the water. Passive 

sensors become useless in shallow water environments because of the low Signal to 

Noise (S/N) ratio, so ASW operators favor active sonar and non-acoustic sensors there. 

7. Sound Channels 

In deep and shallow water, acoustic channels can form that essentially trap sound 

inside the channels. These channels can help propagate sound waves over very long 

distances and help relay a submarines location to a search vessel, but a crafty submarine 

masking its activities from prying hydrophones can also use them [9]. 

8. Other Considerations 

The previously listed topics are by no means an exhaustive list of considerations. 

Some of the other major factors include: bottom composition (sand, clay, etc.), topology 

(sea mounts, pinnacles, trenches), and upslope/downslope effects. Bottom topology is 

important because it can impact the intensity of acoustic signals through absorption and 

scattering. For example, soft silt or clay bottoms will tend to attenuate sound while hard 
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bottoms like rough rock will tend to reflect sound. By way of a common example, 

imagine talking in an enclosed room that is carpeted and then image the same room with 

a hard-wood floor. Topographical features, such as pinnacles, can reflect sound in ways 

that may be misinterpreted as submerged vessels. Further, the slope of the continental 

shelf can act like a megaphone, channeling sound from shallow water source to a receiver 

in deep water, thereby exposing a submarine that may not have been otherwise detected. 

This effect is referred to as down-slope enhancement in [9]. Signals originating in deep 

water may be picked up by receivers in shallow water and is known as up-slope 

enhancement or the “inverse megaphone effect” in [9]. These factors, and more, must be 

considered by both sides of an ASW engagement before entering the battle space.  

C. TOOLS OF THE TRADE 

The right equipment plays an important role in ASW; from sonobuoys to towed 

arrays and on-board processors, the quality and sensitivity of equipment is important in 

influencing the probability of detecting a submarine. 

1. Passive Sonar 

Of all the tools available to the ASW practitioner, the passive options provide the 

most stealth and the most information. Classification of acoustic contacts depends upon 

having as complete of a picture of the soundscape as possible and can be broken into two 

phases: initial classification, and final classification. Initial classification is where a 

sensor operator is trying to determine if a contact of interest is/is not an aquatic animal or 

some other source of noise. To borrow a criminal justice example, it is like a police 

officer trying to establish “probable cause” as a pre-condition for follow on actions. In 

this example, the follow on action would be to continue target prosecution. Once 

probable cause has been established, the sensor operator needs to gather more evidence to 

get to the final classification, which is analogous to a detective having evidence that 

proves “beyond a reasonable doubt” that a submarine exists in the local area, but also 

who it belongs too.   

Every submarine has an acoustic footprint, and a distinct acoustic signature. The 

acoustic footprint helps to divide submarines into families, but once a signature is 
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detected, it is easy to identify an individual submarine. To complete this delicate task are 

two sets of sensors—passive sonobuoys and towed arrays. As detailed in [11], sonobuoys 

are a onetime use sensor; they are typically airdropped by helicopters and fixed wing 

aircraft, but can also be dropped over the side of a ship. The advantage of a sonobuoy is 

that it is cheap and expendable, and one can jettison many of them in the path of a 

submarine. They also have multiple depth settings that can be adjusted dynamically (one-

way). The disadvantage is that they do not always work, have a limited battery life, and 

have limited transmission ranges and require multiple buoys in contact to establish a 

positional fix. 

The other set of passive sensors are the towed arrays. Towed arrays tend to be 

more sensitive than sonobuoys, which allows for greater precision and higher quality 

data. This higher sensitivity results in greater detection ranges and bearings that are more 

accurate. Additionally, towed arrays can have their depth dynamically modified, as the 

depth of the towed body is often a function of the length of the tow line and the speed of 

the towing vessel. This allows the ASW practitioner to place their sensor in an optimum 

location. However, despite their advantages, they do have some limitations; namely, they 

are very susceptible to changes in movement, and will often require a period of 

stabilization before accurate data can be acquired following a change in course or speed. 

Additionally, due to sensor limitations and the nature of sound in water, there is an 

inherent amount of uncertainty in bearing information. This uncertainty is decreased by 

performing what is known as target motion analysis (TMA) as explained in [12]. Simply 

stated, TMA is a process by which many samples of data are acquired, processed, 

filtered. This information provides knowledge of the target’s range, speed, and course 

and is used to create a fix and develop a track. 

2. Active Sonar 

If passive sonar tracking is akin to performing surgery with a sharp scalpel, then 

active sonar tracking is like performing surgery with a battle axe. Active sonar is great for 

many things, but being subtle is not one of them. Active sonar is best used when 

positional accuracy trumps tactical stealth; this becomes important when one is getting 
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ready to launch a weapon, a weapon has already been launched by one or both 

belligerents, or one is trying to deter a weapons launch. Usually, the use of active sonar is 

considered an aggressive action, and one could expect it to be replied to in kind. 

However, it should also be noted that active sonar is also often used as a deterrent. While 

transiting choke points, shallow/littoral regions, or other areas where a potentially hostile 

submarine may be lying in wait, it is not un-common to see a screen of ships or aircraft 

out in front of the high value unit (HVU) pinging away. This action is not generally 

considered hostile, as it is defensive in nature. The threat conditions, intelligence reports, 

cultural norms, and rules of engagement (ROE) will typically dictate how the use of 

active sonar is likely to be interpreted. Actions that are considered hostile, aggressive, or 

annoying are largely a matter of opinion and motivation; careful consideration and good 

judgment must prevail when using this sensor. 

Active transducers are installed onto many devices: hull-mounted sonars, 

helicopter dipping sonars, and sonobuoys are the prime examples. Regardless of their 

installation, they all work approximately the same. A transducer produces a pulse that 

travels through the water until it bounces off some object and returns a receiver. Time of 

flight and angle of incidence are computed to calculate a range and bearing [9]. 

Unfortunately, for the sonar operator, a ship, submarine, and a rock produce similar 

returns, and so they must have more information to decide which target is the one of 

interest. This is usually performed in concert with passive acoustic information, or 

information gathered from other sources. 

3. Non-Acoustics 

Non-Acoustics, as the name implies, covers the broad category of all the detection 

means that do not utilize sonic energy for detection. Radar systems are helpful in 

detecting submarines when they or parts of them like the sail or periscope are on the 

surface. IFF systems, the cousin to radar, are helpful in identifying unknown objects by 

sending out interrogation signals to receivers that return authenticated replies if they are 

friendly forces, or nothing if they are neutral or aggressive. Much like active sonar, most 

radar systems are not passive; their use can be detected by other platforms. Sophisticated 
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electronic support measure (ESM) packages employed by many aircraft and maritime 

vessels serve as early warning and classification sensors. ESM systems are passive in 

nature and merely attempt to detect, classify, and gain bearing resolution on other active 

sensors like radar, IFF, and lasers. MAD systems attempt to detect submerged vessels by 

fluctuations in the normal/local magnetic field caused by the movement of a large 

metallic object. These systems are generally considered semi-passive as they do emit 

some radiation that could be detected. Electro-optical devices like FLIR and NVGs 

operate by being sensitive to infra-red radiation and are helpful for seeing dim lights at 

night or heat sources on or in the water. The human eye is adapted to detect movement 

and to perceive objects that appear out of place. Many submarines are spotted by the keen 

observation of aerial lookouts. 

D. GETTING THE MISSION DONE 

The previous section discussed the sensors used against target submarines. This 

section focuses on the platforms that use those sensors. 

1. Traditional Platforms 

Until recently, the primary method of detecting and tracking submarines was 

through multiple manned platforms. Each platform is designed for a different phase in the 

ASW mission and usually covers a gap in another platform’s capabilities. Starting at the 

furthest reaches of detection are the SURTASS ships. These ships, operated by the 

Military Sealift Command, have sophisticated acoustic sensors. Moving closer in is the 

Maritime Patrol and Reconnaissance Aircraft (MPRA) of which the U.S. Navy flies both 

the P-3C Orion, and its successor the P-8A Poseidon. According to [13], these aircraft 

have long ranges and can carry a large payload of sonobuoys, torpedoes, and mines and 

are often equipped with radar, MAD, and other non-acoustic detection devices. The P-8, 

in addition to new and upgraded sensors over the P-3, is also capable of in-air refueling, a 

higher service ceiling, and greater speeds than its predecessor. 

Moving closer still are the destroyers, multi-mission surface combatants that are 

outfitted with powerful active sonar arrays along with sensitive towed passive sonars. 

Destroyers have long endurances and can travel at high speeds while carrying a 
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significant amount of anti-submarine weapons. For clarity, when referring to destroyers, 

the author is specifically considering the DDG-51 family of warships. At the time of this 

document, the LCS/frigates currently do not have an operational ASW module and the 

cruisers are generally reserved for the Anti-Air Warfare role relegating ASW to a 

secondary mission.  

Finally, patrolling the closest range to a subsurface contact is the ASW helicopter. 

Currently, the U.S. Navy only operates the MH-60R “Romeo” Seahawk for close range 

ASW. The Romeo’s capabilities include: powerful dipping (active) sonar, a small 

complement of sonobuoys, surface search radar, FLIR, ESM, an ability to carry multiple 

torpedoes, and Hellfire missiles. The MH-60R is often deployed with surface ships like 

destroyers and cruisers. 

2. New Platforms 

Unmanned systems are increasingly being viewed as a means to improve 

detection of sub-surface contacts while achieving certain cost and operational 

efficiencies. The Navy hopes to achieve these goals through the reduction in associated 

manning requirements brought about by increased sensor coverage and increased 

persistence through endurance. Lower overall costs associated with maritime operations 

may be achieved by having dedicated platforms to conduct ASW that free up more 

expensive assets, such as destroyers. Many government and academic institutions are 

investigating the suitability of unmanned surface vehicles (USV) to perform all or parts 

of the ASW mission. The succeeding paragraphs discuss the two most mature ASW USV 

designs and their comparative strengths and limitations. These two designs exist on two 

opposite ends of the size spectrum and as such pose an upper and lower bound for future 

designs. 

a. ASW Continuous Trail Unmanned Vehicle (ACTUV) 

ACTUV, pronounced “active,” is a large unmanned surface vehicle jointly 

produced by Defense Advanced Research Projects Agency (DARPA) and the U.S. 

defense company Leidos. Also known as Sea Hunter, she is 132 feet in length making it 

the largest USV to date. ACTUV boasts 60–90 day endurance while actively tracking a 



18

target. The vessel currently has two different types of sonars installed though the program 

is still in development and sensor packages are likely to change [14]. From an autonomy 

perspective, the most impressive quality is the suite of computers installed that allows 

ACTUV to autonomously follow maritime rules of the road and to track a submerged 

target without human intervention. 

b. Sensor Hosting Autonomous Remote Craft (SHARC)

SHARC, pronounced “Shark,” is a comparatively small unmanned vehicle 

produced jointly by Boeing and Liquid Robotics. SHARC is ten feet in length, has a four-

foot beam, and has a free board of about one foot; the SHARC cuts a small profile. The 

SHARC is propelled by wave motion, and the sun powers its electronics. The SHARC 

has an endurance of up to a year with the limiting factor being salt encrustation and the 

accumulation of parasitic life. Because there are no motors, the SHARC is incredibly 

quiet. However, because it has no propulsion means other than waves, its forward speed 

is approximately 1–3 knots. This is its greatest drawback, though with careful planning, it 

can be mitigated. The SHARC collects acoustic information from its sensors and 

processes that information locally [15]. Table 1 compares SHARC and ACTUV.  

Table 1.   Comparison of USV Capabilities and Limitations 

Vehicle Strengths Limitations Operation 

ACTUV High Speed 
Long Endurance 
Quiet 
Multi-Sensor 
Large Payload 

Fossil Fuel Power 
Large Size 

Uses its dual sonars to detect, and track 
subsurface contacts. 

SHARC Low Observability 
Very Long Endurance 
Solar Powered 
Wave Propelled 
Very Quiet 

Slow Speed Processes and filters acoustic info 
onboard and notifies base only when a 
signal of interest. 

3. The ASW Detect-to-Engage Sequence

The ASW Detect-to-Engage Sequence is a way to think about an engagement 

with a potentially hostile submarine broken down into distinct phases that can loop back 
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when there is insufficient data or clearance has not been received to proceed to the next 

phase. The phases are 1) detect, 2) localize, 3) classify, 4) track, and 5) attack. These 

phases overlap with parts of Joint “F2T2EA” Kill Chain Sequence contained in [16]. 

“F2T2EA” is an acronym that stands for Find-Fix-Track-Target-Engage-Asses. Members 

of other military branches may be more familiar with this concept and so it is included to 

facilitate understanding.  

Table 2 is an illustration of how the ASW Detect-To-Engage sequence overlaps 

with the Joint F2T2EA sequence.  

Table 2.   ASW and Joint Operations Kill Chains Compared. Adapted from [16]. 

ASW DTE Detect Localize Classify Track Attack 

Joint F2T2EA Find Fix Track Target Engage Assess 

 

E. POTENTIALLY HOSTILE THREATS TO SURFACE VESSELS 

1. Diesel-Electric Submarines 

The most prolific submarine type operated worldwide, diesel-electric submarines 

are favored because they are relatively cheap to produce, hard to detect, and provide an 

asymmetric advantage (stealth) to the navy that employs them. However, for all of their 

benefits, these vessels are not without their drawbacks.  

Traditionally referred to as ‘conventional’, the modern diesel-electric submarine 

has a lot in common with its predecessors that saw service in World War II. These 

vessels use diesel fueled combustion engines to operate their propulsion, drive their 

electrical generators, and to charge their batteries. The diesel engine is incredibly noisy 

and easily detectable acoustically, and usually requires the submarine to be frequently on 

or near the surface to vent combustion gases. Time spent in this configuration is 

minimized to the maximum extent because it makes the submarine vulnerable to air and 

surface assets. 
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The story is vastly different when considering this family of submarines when 

operating on battery. Like an electric car, a submarine operating on battery is very quiet, 

and may provide only the faintest clues to its presence, namely cavitation and fluid noise. 

These vessels generally lack the endurance found in the larger nuclear powered 

submarines; however, because of this, the crews of diesel-electric boats tend to be very 

familiar with operations in their local environment. This knowledge and proficiency 

coupled with their stealth make them dangerous. 

2. Nuclear Powered Submarines 

Much more expensive to produce because of the manufacturing and scientific 

costs associated with production, these types of ships only see service in the major navies 

of the world like the U.S., U.K., France, China, and Russia. Using fission reactors as a 

power source for propulsion, these vessels are much more expensive than diesel 

submarines to produce but are not limited by a need for frequent surfacing. They can stay 

submerged nearly indefinitely, constrained only by food reserves and crew endurance, 

making them a formidable threat. 

These vessels are very quiet, certainly far more than conventional subs on diesel 

power, though they do have a critical vulnerability. The reactor aboard these vessels 

requires a constant flow of cooling water to keep the temperatures in the reactor from 

becoming critical. Flowing water requires pumps, and pumps make noise. To a keen ear, 

or electronic sensor, these pumps could be detectable  

While conventional submarines generally lack the sustained speed required to trail 

or lead a target, the nuclear powered vessel has the speed needed to get ahead of many 

surface ships. This is a major consideration, as it allows the nuclear submarine 

commander to dictate the terms of an engagement, and frees them from having to rely on 

ambush tactics. Additionally, because of their comparative size, nuclear submarines also 

frequently carry nuclear ballistic missiles, sub-launched cruise missiles, and special 

equipment for irregular warfare purposes.  
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3. Submarine Weapons 

This section discusses the means with which a submarine has to ensure that it is 

allowed a “vote” in an engagement scenario.  

a. The Crew 

It may seem a bit cliché, but a submarine is more than just a delivery platform for 

a suite of weapons and intelligence gathering tools. Each submarine is operated by a 

human crew and the vessel is an expensive instrument of national power. Therefore, not 

only are you fighting the weapons, but the collective intelligence of the crew who is 

driven by the same or similar motivations as our own sailors. The enemy is crafty, wants 

to be elusive, and likely fears defeat and death as much as any other person. The inherent 

strengths and weakness of the human mind are factors to consider when developing a 

system that is designed to defeat them.  

b. Torpedoes 

The torpedo is the submarine’s primary close-in weapon and arguably its most 

damaging. Unlike missiles, torpedoes have significantly shorter ranges, but they carry 

much greater explosive payloads. There are many different types of torpedoes, to include 

wake-homing and sonar guided, but functionally they all have the same aim: get under 

the mid-point of a ship’s keel and explode causing a massive air bubble to form under the 

ship that lifts it out of the water and breaks the keel. This cracking of the hull is 

devastating and will usually cause the ship to split in two parts. A USV designer should 

ensure that the vessel is able to detect a torpedo launch—a relatively simple task due to 

the distinct and easily discernible acoustic signature. Once detected a few options are 

available. First, the USV should immediately alert its controller, and all nearby assets of a 

torpedo launch. Second, if equipped, the USV should attempt to lure the torpedo away 

from its target by acting as a large counter measure. Third, and this may be more 

difficult, but the USV system as a whole might be able to plot the torpedo’s track line and 

get a reciprocal bearing. While the torpedo will certainly create a wake that is highly 

visible during the day to an alert spotter, it would be nice to have more than a pair of 

eyes. 
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c. Missiles 

Submarines are capable of carrying an assortment of different missiles. For local 

defense while a submarine is on the surface, many navies will arm their subs with what 

are known as MANPADS, Man-Portable Air Defense Systems, more commonly referred 

to by the more popular brand name “Stinger.” These shoulder fired weapons are intended 

to engage low-slow-flying aircraft, particularly helicopters that should get within their 

limited acquisition range. Moving up the lethality curve are the submarine launched anti-

ship or land-attack cruise missiles. These weapons usually require external queuing 

sources or preset coordinates to be most effective. Finally, topping the scales on lethality 

are the ballistic missiles, which reach sub-orbital altitudes before their warheads are 

navigated to their targets. Ballistic missiles may carry conventional or nuclear warheads. 

Air assets are most at risk to MANPADS, surface ships are most at risk to the cruise 

missiles, and Carriers are at risk to ballistic missiles. 

There is not much a USV outfitted for ASW can do about an incoming missile, 

but consideration should be given to determine how one might quickly increase the radar 

cross section or IR signature of the USV in an attempt to be a counter to an incoming 

missile.  

d. Mines 

Other than directly attacking surface vessels, submarines are well adapted at 

laying down a mine field covertly. Nautical mines, like their land cousins, are nefarious 

weapons that often do not discriminate between their targets. Ocean mines can have 

multiple types of triggers. The most common are contact and induction triggers. Contact 

mines as the name suggests will not detonate until something physically contacts one of 

their fuses. Induction mines will either wait for a magnetic field to pass by releasing a 

mine to float to the surface and then detonate via contact or the magnetic field will be 

enough to set off the explosive. Mines aim to achieve a hard kill in a similar fashion as a 

torpedo, by exploding underneath a vessel thereby cracking its hull. Alternatively, a mine 

can be just as deadly when it punctures a hole in the side of a ship and causes 

compounding emergencies. For a modern example, see the USS Samuel B. Roberts case 
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study in [17]. The “Sammy B” struck an Iranian mine that broke the keel and caused 

severe flooding and fires. It was only through the hard work of the crew that the ship 

survived.  

Mines serve a strategic purpose by acting as a hazard to all maritime traffic. 

Mines are a convenient and economical way for an adversary to shape the battle space 

and political discourse to their advantage by creating choke points and barriers where 

none existed before. These obstacles can produce a funneling to maritime traffic that a 

submarine could use to its advantage.  

Mine hunting has similarities with sub hunting, and it has been proposed in [2] that 

USVs could also be used as mine-hunters. More study would be required to determine if an 

ASW USV could serve double duty as a mine-countermeasure (MCM) USV. 

e. Counter Measures (CM) 

As if hunting submarines was not difficult already, the cat and mouse game that 

exists between the technology to hunt submarines and the sub’s ability to defeat or at 

least distract said technology is well known. In the zero-sum game of ASW, counter 

measures serve to give the submarine a few more moves before it is faced with a loss or 

can ensure a win. Counter measures include everything from low-tech static noise 

makers, to high-tech decoy UUVs.  

The purpose of a counter measure is to deny the adversary the ability to gain a 

firing solution. If that action has failed and the enemy has fired a weapon, then CMs are 

used to try to defeat the weapon. The counter measure game becomes one of escalation 

where one side will develop a weapon to destroy their opponent, which drives the 

opposing side to develop a CM to defeat the weapon or targeting system. Then, as is 

natural, the initial side will then build into its software or hardware an ability to detect 

CMs thereby defeating them, and so on and so forth.  

Understanding that subs may use CMs is important because it is likely that a USV 

will encounter them during the course of its service life. For example, a submarine, 

having been detected by the USV, might launch a CM to distract a USV before the USV 
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can gain a better track or fix on the submarine. Think of it as similar to a magician’s 

sleight of hand. The USV needs to know or learn the particular characteristics of CMs in 

order to ignore the misdirection so as to focus on the submarine’s true signature. 
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III. AUTONOMOUS SYSTEMS FOR ASW 

Before one can begin to design an autonomous system, one needs to know a 

couple of key pieces of information. This document will not attempt to push any 

particular definition of autonomy but it is import for the reader to note that this is a 

contentious issue in the robotics field because the term ‘autonomous’ carries with it much 

weight from other fields of study like psychology, sociology, and philosophy. These 

groups have been trying to characterize autonomy in humans with varying definitions. 

This is a sticking point for the robotics community, as it is a relative newcomer to the 

discussion. Artificial intelligence comes to the proverbial table missing a key component 

—morality/soul/feelings, an aspect which is critical in the study of autonomy in humans, 

in a thought: “free will.”  

Additionally, a distinction needs to be made between “autonomous” and 

“automatic.” The terms “autonomous” or “autonomy” refer to the agent’s ability to 

perform tasks with limited human involvement, whereas “automatic” or “automated” 

simply refer to behavior that is scripted and predictable given a certain start state. 

Algorithms are used to automate a system when much of the problem space can be 

covered by the algorithm. However, things become tricky when you begin dealing with 

many unknown and unpredictable behaviors. 

The following sections lay out some concepts that are important to understanding 

autonomous systems in general and an ASW USV in particular. 

A. THE AGENT 

The term agent is derived from the Latin word “agere” or “to do” [18]. Simply 

stated, an agent is an entity that performs actions. Certainly, this word may have an 

overly broad definition, though it is useful to use in place of pronouns. For the purposes 

of this paper, agent will refer to the high-level construct of the USV as a whole, 

understanding that this high level entity may actually be composed of sub-constructs of 

other agents, each with their own distinct behavior. The following sections discuss 

different aspects of an autonomous agent.  
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1. Artificial Intelligence 

To begin to understand the limitations imposed on an autonomous system, it is 

important to remember that despite how “intelligent” it acts, it is still just software. At the 

risk of insulting our future robot overlords, this comment is not disparaging, but a 

statement of fact. When someone says that they have created artificial intelligence, they 

are saying that they created software or hardware that mimics the interactions that 

humans have, and in some ways is convincing enough that an outside observer might 

think for a moment that they are interacting with another human. This thought is the basis 

for the Turing Test. Alternatively it could mean that the software came up with the same 

or better solution than a human did given the same stimulus, as in a game of chess.  

Alan Turing, of Enigma fame, is a legend in computer science. In 1950, Turing 

proposed a challenge: a computer with artificial intelligence as an attribute would appear 

to display human level intelligence under the certain conditions. The passing conditions 

were: after being given a set of written questions, the computer then independently 

composes written responses that an observer is unable to distinguish between human and 

computer. This test implies the need for optical scanning, natural language processing, 

and an extensive knowledge base from which to craft an answer [3]. This challenge was 

initially known as the Imitation Game and is now known as The Turing Test. The passing 

conditions for this test have been further refined and the test can be thought of as the high 

bar for any potential AI to meet. However, it is a bit limited in its scope and not all AI 

agents need to meet this standard.  

2. Rationality 

An action is said to be rational when it is performed to accomplish the best 

possible known outcome, emphasis on the word known. If there is uncertainty, or there is 

not enough time to make a well thought out decision, then an actor selects an action to 

support the best expected/projected outcome given the time and resources to do so. The 

later notion is referred to as limited rationality in [3]. The smart designer wants his or her 

system to be rational, following logic and rules, rather than choosing randomly, or 

knowingly choosing an incorrect move. It is important to stress that there may be an 
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occasion that a rational actor needs to select an action at random, but this must be on 

purpose with the ultimate goal of achieving its objective. For example, a robot finds itself 

at a fork in a road, and knowing nothing of the paths that lay before it must select to go 

either left or right. If the robot is not allowed to back track, and must select either choice, 

then it may do so “randomly” and still be considered rational.  

To help illustrate the point, Russell and Norvig suggest that rationality at any 

given point relies on four things, from [3]: 

 The performance measure that defines the criterion of success. 

 The agent’s prior knowledge of the environment. 

 The actions that the agent can perform. 

 The agent’s percept sequence to date. 

3. Sensors and Actuators 

As mentioned in [3], sensors are used by an agent to perceive its environment. In 

the case of the ASW USV, sensors would include sonar, radar, cameras, GPS, and others 

as deemed appropriate. Actuators are anything that the agent uses to act upon its 

environment [3]. For this craft, its actuators will be its propulsion system, stability and 

helm (steering) control systems, communication systems, and if the USV were armed, the 

weapons systems could be considered actuators.  

4. Perceptive Sequence 

Russell and Norvig define a percept in [3] as referring to the agent’s perceptual 

inputs at any given point in time. Therefore, according to them, a percept sequence is the 

entire history of everything the agent has perceived up to that point in time. 

5. Agent Functions  

An agent function is described in [3] as the mathematical mapping of any given 

percept sequence to an action. A table could be constructed to host every percept 

sequence (Ps) from Time = 0, till Time = n, but that table would grow very large, very 
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quickly, growing without bound. In reality, one is only concerned with smaller slices of 

time in which interesting changes to the environment have occurred.   

6. Agent Programs 

The agent program is a counterpart to the agent function. As stated in [3], the 

agent function is an external observation of what the agent has done, while the agent 

program is what is actually controlling actions at each instant in time. The agent program 

is the internal programming that is responding to stimulus and performing an action. 

Once the action has been completed, the precept sequence that resulted in that action 

could be logged in the agent function. 

B. THE ENVIRONMENT 

The term environment needs some disambiguation. First, for the purposes of this 

document, consider the term ‘task-environment’ to refer to the problem space that the 

USV is a solution too. This task-environment also includes the physical and or virtual 

environment, but those will be discussed separately. Russell and Norvig recommend the 

following acronym, PEAS, for defining the Task Environment. The following list is 

adapted from [3]. 

 P – Performance Measures – quantitative metrics need to be defined for 
the agent to determine how successful it is in a given environment. In the 
case of USV, measures might include: Minimum travel time between 
waypoints, minimum fuel usage, minimum COLREGs violations, and 
minimum false positives.  

 E – Environment – this is the physical (or virtual) environment that the 
agent is operating in. For the ASW USV, this environment would include 
other surface and subsurface vessels, hazards to nautical navigation, 
underwater topography, maritime traffic separation schemes, and sea state 
– to name a few.  

 A – Actuators – as previously mentioned, these are parts of the vehicle 
that interact with the outside world. Examples: Rudder controls, engine 
throttle, trim servos, navigation lights, external interface panel/touch 
screen, etc.  
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 S – Sensors – as mentioned, these are the instruments and sensors the 
vehicles uses to perceive the environment. Examples: Fathometer, GPS, 
compass, radar, electro-optical devices (infrared, true color), sonar, etc.  

C. THE PROBLEM 

The previous sections discussed the submarine threat, its capabilities, the 

underwater environment, artificial intelligence, and autonomous systems. This serves as 

the framework for the real design challenge. 

1. Protecting the Battle Group 

The United States Navy has identified the following area as being suitable for 

employment of USVs: peacetime ASW in performing the Maritime Shield and Protected 

Passage missions from [1, 2]. These missions serve to push out the battle groups sensor 

net to expand the area at which a high value unit (HVU) like an aircraft carrier may 

operate free from harassment by submarines. This problem does not concern itself with 

attempting to detect all submarines in the ocean, or trying to follow submarines from 

their homeports. Battle group protection is about forming a perimeter around the HVU 

that, with reasonable probability, is clear of undetected submarines. The crew of an 

undetected submarine has a significant advantage over their opponent—surprise. Once 

the submarine’s crew knows they have been detected, their advantage of surprise is 

diminished, and hopefully they feel that the risk of a successful counter attack would be 

too great as to be too risky their safety.  

2. Two Scenarios 

As mentioned, two scenarios are being considered: maritime shield and protected 

passage. Both of these scenarios are centered on the HVU, but one is stationary (Shield) 

and the other is mobile (Passage). The two mission areas are shown in relation to each 

other in Figure 2.  
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Figure 2.  ASW Nomenclature. Source: [1]. 

Maritime Shield is focused on protecting the MODLOC or CV (Carrier) 

Operations Area (CVOA), that body of water that directly surrounds a HVU where the 

HVU will be operating for an extended period of time. Traditionally this body of water is 

laid out as a square with the HVU at the origin, though it could also be a circular shape 

out to some radius from the HVU. No matter the geometry, the shape remains stationary 

even though the HVU may be moving inside. The HVU is vulnerable because after a few 

days of observation, an adversary may be able to suppose where the HVU is or will be 

and take steps to neutralize it. Having early warning of a perimeter breach is important to 

prevent this situation. This mission is illustrated in Figure 3.  
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Figure 3.  Example of Maritime Shield. Source: [1]. 

Periodically, it is necessary for the HVU to reposition itself, sometimes hundreds 

of miles away to another MODLOC/CVOA. In this situation, the HVU becomes 

vulnerable to an ambush or a flanking maneuver. When the HVU is in transit, it becomes 

susceptible to attack from a submarine that may be lying in its path, like a coiled viper, to 

strike as the unit passes overhead. Similarly, the HVU could possibly be funneled into a 

kill box composed of a well-placed mine-field or potentially hostile SAG. Furthermore, 

the HVU is concerned with the reach of land based area denial weapons, of which the 

adversary is well acquainted with the ranges and therefore limitations, and could attempt 

to push the battlegroup into this range. If the HVU avoids possible ensnarement and 

traps, it may still be vulnerable to attack while its figurative back is turned. The baffles 

are a well-known region behind a ship where its acoustic sensors may not function very 

well. A submarine can exploit this region to sneak up behind a ship and fire a weapon to 

follow the ship’s wake. Delousing, as it is called, is the part of the mission in the 

vanguard where units are actively trying to “push” submarines out of the intended travel 

path. No special term exists for covering the rear, but it is just as important that someone 

does not sneak in from the sides or rear flanks of the formation. This mission is illustrated 

in Figure 4.   
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Figure 4.  Example of Protected Passage. Source: [1]. 

3. A Note on Complexity 

In the information sense-making process, there is a model known as the Cynefin 

framework that helps form a discussion on systems. In developing the software 

architecture for a USV for ASW, it is important to understand what kind of problem 

environment one is dealing with to ensure that developed solutions are likely to fit. In this 

model from [19], five domains exist (in order of increasing complexity): simple, 

complicated, complex, chaotic, and disorder. Simple systems are those that have a strong 

cause and effect relationship and information is ordered. Complicated systems have a 

recognizable cause and effect relationship, but may require some analysis to discover it. 

There may be multiple “correct” ways of solving a problem, but it hinges on an expert’s 

experience to select one that makes sense. In a complex environment, cause and effect are 

obvious post hoc with only light constraints on agents. A chaotic environment has very 

little order and any decision is probably as good a decision as any other [19]. Finally, 

disorder has no useful structure. D. Snowden, the author of the Cynefin framework, states 

that disorder is the natural state that most people and environments are in until they have 

been better understood and can start working from one of the other domains.  

While it would be nice to claim that non-wartime ASW could be considered 

simple that would be a flight of fancy. This author’s assessment is that this phase of ASW 
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falls somewhere in the complex or complicated regions of the model. For a moment, 

suppose one eliminates some of the variables about acoustics in the open ocean and 

assumes a constant speed and therefore highly predictable nature for sound propagation. 

This assumption would alleviate much complexity, but one would still be left with the 

human component. One could attempt to make assumptions on human behavior, but 

those assumptions should be characterized as foolish at best and deadly at worst. For 

example, one might assume that all submarines from allied countries are friendly and all 

submarines from non-allies are potentially hostile, and this is probably an assumption that 

most commanders make…but it is flawed, as friends can quickly become enemies and 

enemies may not always attack.  

Suppose one were to assume that a submarine belonging to a country called 

Orange is detected close to a high value unit of a country called Blue, then that submarine 

is considered potentially hostile by Blue. This is a fair assumption from the defensive 

standpoint of Blue, it does not hurt to think that a submarine belonging to a potential foe 

(Orange) might attack without provocation; after all, one is only a bullet or torpedo  away 

from a war…. Therefore, Blue takes appropriate defensive measures in accordance with 

ROE and doctrine. For the Trekkies (Star Trek fans), this would be the equivalent of 

setting “Yellow Alert.” Now suppose that it is observed that Orange’s submarine has 

come to periscope depth, radiated radar, and has been acoustically detected opening 

torpedo or missile tubes. Blue is now faced with a hard choice, does he attack Orange 

preemptively before Orange has shot a weapon, or does he wait…knowing that only the 

utterance of the word “Fire” stands between a warhead and Blue having to defend 

himself? Both actions have risks and consequences. The answer is…it depends, and that 

is why a ship’s captain is paid the proverbial big-bucks to decide. This scenario is given 

to hint at the inherent complexity of just the human element, let alone the physical 

environment. When taken in summation, ASW in non-wartime can best be classified as a 

complex domain. 

You might be wondering, “Why is this important?” The proposed USV system 

must operate in this environment, and it is vitally important to engineers, programmers, 

operators, and policy-makers to understand the inherent limitations imposed by such a 
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dynamic situation. It will be impossible to make a USV that operates perfectly in all 

situations, as it is practically impossible to predict every possible action and reaction that 

every agent will make, especially agents that may not always be acting rationally. 

Instead, the user of this system must be satisfied with a system that is limited in scope, 

ability, and applicability, and therefore must craft the test and verification cases carefully 

to ensure proper operation for the most critical of functions.  

In other words, rely on a USV to provide information that informs the decisions 

and actions of humans. The challenge is to anticipate what information skilled users will 

need to make good decisions.  
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IV. DESIGNING A SOLUTION 

On the surface, maritime shield and protected passage may appear to be 

completely different problems, sharing only a common operational area. However, the 

more one considers it, the more it becomes obvious that from a software perspective, the 

scenarios are close enough to each other that a common solution can be developed. 

However, there is a strong caveat—while the software may be identical, the hardware 

probably will not be. Both mission sets share many traits; however, Protected passage 

favors a vessel that trades endurance for speed based on a need to stay with or ahead of 

an advancing HVU. The maritime shield mission, being one where the HVU lingers in an 

area for a considerable amount of time lends itself to a design that conserves energy and 

requires minimal interaction with support vessels.  

A note on employment: it should be considered that a blended/hybrid use of both 

of these types of platforms will likely yield the most defensive advantage to the HVU. A 

protected passage hull form would have speed enough to traverse the near-mid range 

areas around an HVU to quickly prosecute any strange readings that a Maritime Shield 

hull form detects. Instead of trying to engineer a solution that fits all scenarios (poorly), it 

would be wiser to design two dedicated platforms that execute their respective missions 

exceptionally well, and then use them in concert with each other to minimize their 

disadvantages while capitalizing on their advantages. To be succinct: keep it simple, have 

defined roles, avoid multi-mission, and realize that mission creep is inevitable.  

This chapter is organized in the following manner: Sections A through C are the 

preliminary sections that set the framework for a discussion. Sections D and E outline the 

design while Sections F through I discuss each major module. 

A. REQUIREMENTS ANALYSIS 

The purpose of requirements analysis is to determine a customer’s needs 
in sufficient detail to plan the construction of a software system meeting 
those needs. [6] 
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In this section, the requirements of an ASW USV are detailed. Few of the 

requirements have been stated explicitly, many have been stated implicitly. A larger 

number still have been derived when taking the implied and explicit requirements to their 

logical conclusions.  

Problem statement: The purpose of the shipboard ASW USV control system is to 

enable a single operator or a team of operators to manage one-to-many USVs in support 

of ASW operations in the vicinity of a HVU and its escorts. 

This is a plain language statement from the perspective of the customer [6], in this 

case the U.S. Navy, which will guide the rest of the development process. The vagueness 

of the statement is a result of the vantage point it was made from, we will call it the 

thirty-thousand foot view. At that altitude, everything is tiny and imprecise, but it will be 

necessary to break this statement open to further define requirements and to build a 

model that integrates all the requirements.  

B. ASSUMPTIONS 

The following is a list of the initial planning assumptions on how the USV system 

should operate: 

 The USV will not be used as a weapons delivery platform. 

 The USV will not be regularly operated in known combat areas. Self-
preservation, passive defense measures only 

 The USV will likely be used in partially, but not fully degraded 
communications environments. 

 Near-Real Time C2 is sufficient; some latency in the receipt and execution 
of commands to USV is permissible. 

 The USV is not intended to be a replacement for any current system, but 
rather an augmentation to existing platforms. 

 The USV control system will be able to be installed aboard LCS or larger 
warships. 
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C. SETTING THE AUTOMATION BOUNDARY 

For the scope of this project, the solution space is defined as starting from an 

individual USV, proceeding to a central command module, and terminating with an end 

user. Integration with other existing systems will be discussed as necessary, but further 

study into integration will be required before adoption of this system. Setting the 

automation boundary functions similar to stating the scope of a research study; it 

identifies what is and is not inside the responsibility of the automated system, as 

illustrated by Figure 5.  

USV Module – Hardware/Software Layer

C2 Module – Domain Layer

HCI Module  – Presentation Layer

Control Module

Unmanned Systems 
Mission Manager

Specialist
Specialist

Specialist

Observer
Observer

Observer

 

Figure 5.  Automation Boundary  
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D. DESIGN AND ARCHITECTURE 

This system is composed of three distinct software components that together form 

one system. These components are the USV module, command and control (C2) module, 

and the human computer interface (HCI) module. In the following paragraphs, the 

thought behind each module is explained as well as the considerations for each module. 

The design for this system is influenced by the desire for simplicity and 

modularity. The goal being to avoid a monolithic structure that becomes difficult to 

modify and manage. Additionally, the design follows a classic three-tier approach as 

suggested by [20], where the USV encompasses the hardware/software layer, the C2 

module encapsulates the domain layer, and the HCI module encompasses the presentation 

layer. Each layer is functionally separate except for the needed cross layer connections. 

This approach supports the modularity aspect, and allows changes made to aspects of one 

module to have minimal to no impact on other modules. The main goal here is that if one 

wants to repair, replace, or add functionality to the HCI module, it should not “break” 

anything in the C2 or USV modules and vice-versa. 

The hardware/software layer is concerned primarily with controlling the hardware 

that is aboard each USV, and with converting raw sensor outputs data into digital data 

that can be more easily shared and manipulated. The domain layer as discussed in [20] is 

concerned primarily with managing the business rules of ASW, remote vessel operation, 

and acting as a clearing house of information to be used by the presentation layer. 

Finally, the presentation layer is concerned with displaying information to the end-user 

and capturing the user’s input to control operations. In a tiered architecture, the lowest 

layer has very little awareness of the higher layers, it simply does what it needs to do and 

keeps operating until it is stopped. As one ascends layers, their awareness grows but their 

influence on lower layers diminishes. 

 The following list has a brief overview of each module before the more 
detailed descriptions that follow 

 USV Module – Primarily a data gathering and limited information-
production agent. This module performs many “housekeeping” functions 
associated with an autonomous vehicle. Its primary objectives are to go 
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where instructed, not run into things along the way, operate onboard 
sensors, and if necessary-follow assigned targets.  

 C2 Module – Data and information fusion agent, keeps track of USVs so 
that humans do not have to too. Produces info to be consumed by HCI 
module or other consumers as required. 

 HCI Module – Information presentation and human input gatherer. 
Produces no new information. 

E. AREAS FOR AUTOMATION 

The purpose of this section is to discuss areas that can benefit from automation or 

refinement to present automation if already automated. 

1. Detection 

Detection is arguably the most important part of ASW; it is the point from which 

all other actions are measured. If one does not detect anything, then they need to keep 

searching until they find something or they are directed to cease searching. To return to 

the discussion on complexity, ASW before detection could be classified as disorder or 

chaos, the equivalent of watching the static on a television looking for an image to show, 

even if just briefly. Granted, one usually does not perform ASW unless there is a reason 

to suspect that there might be submarine activity, after all there are other threats that 

could impact the mission far before a submarine does. The battle group commander has 

limited human and vehicle resources and so he must be wise with the expenditure of 

effort. However, even when a commander has established an ASW watch team, there is 

no guarantee that an adversary will show up. When this occurs, it leaves the watch-

standers fixed at their stations hoping to see something interesting.  

This is a waste of human resources, to dully sit and watch a screen until 

something interesting appears or until the ASW team gets better queuing information. 

This then becomes a candidate for automation, but one must be cautious—unless a search 

algorithm is properly configured, the operator may be inundated with false positive alerts. 

This is where an artificial neural network (ANN) may show its true potential. By using 

the ANN with a search algorithm, a search program could comb through data sets 

collected from the USVs in near real-time through offline processing. While the 
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information would be time-late, it would help to establish a high probability that a contact 

of interest (COI) exists in the search region. It may even be possible to establish an initial 

position, known as a datum. This is helpful because an area of uncertainly can be plotted 

from that point. By using heuristics and simple reasoning, operators may then be able to 

place sensors in the water that will yield more information.  

Detection requires a low false positive rate because the sensors that would be used 

to investigate a possible contact are expensive to use with respect to time, and unit cost. 

2. Localization and Tracking 

Localization, also called fixing, is the process by which an initial position 

estimate of the target is obtained and follows after detection and dovetails into tracking. 

Localization is the step in ASW after initial detection where the team attempts to 

establish a Datum or a follow on fix from a Datum. Once course and speed have been 

established for a contact the team moves on to tracking i.e., the process by which a fix is 

updated as the target moves. 

a. Considerations 

While signal processing is quite robust aboard current ASW assets, it is still 

policy to require a human to evaluate the presented information to create an initial line of 

bearing to an underwater contact. After obtaining multiple lines of bearing, a positional 

fix can be established for initial target tracking. At this point it is possible for an operator 

to hand over tracking to the computer, and they often do. However, the wise operator will 

also continue to maintain their own track of a target for backup. 

 Current tracking algorithms generally function well; however, they do not 

perform well with minimal information or time-late information. As a result, the area of 

uncertainty around automated tracks may grow quickly when “fresh” contact information 

is unavailable. Many tracking algorithms use a form of least-squares regression to plot 

track-lines. These track-lines can become skewed when junk information is supplied. The 

phrase “garbage in, garbage out” is common when discussing such algorithms. A human 

operator is not as easily fooled by tactics that a submarine may employ to throw off a 
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hunter and is usually more selective about which data points are incorporated into their 

tracking solution.  

Improvements to the automated tracking algorithms would greatly improve the 

accuracy and reliability of the generated tracks. It would be helpful if the system 

recommended a location for the next buoy drop, or where to position a USV. 

b. Implementation 

Tracking the submarine should be performed by the C2 module, as it will have the 

best SA of the mission and all the other moving parts. However, the vehicles need to be 

adept at knowing where other USV’s in the group are so that each can benefit by 

collective track processing for the same contact.  

This task is more complicated than simply updating the fixes from acoustic 

sources to come up with an accurate track of a contact. This task would ordinarily require 

the placement of more sonobuoys in the predicted path of the submarine, but if the USVs 

could sprint ahead just a few hundred yards, then they themselves would be able to form 

a tracking chain. To accomplish this will require a few key enablers: each USV group 

needs to know where its neighbors are for collision avoidance purposes, and to ensure 

placement in a logical spot. The USVs may not know which vehicle has the best contact 

with the submarine, so it is therefore contingent upon the C2 module to track this 

information and ensure that only those vehicles that are down Doppler with increasing 

integration times are repositioned. Additionally, this will require the USVs to be able to 

communicate with neighbors to share acoustic data relevant to tracking.  

3. Dynamic Event Notification 

In the ASW lexicon, a dynamic event is an acoustic event of significance with the 

following examples: speed change, course change, depth change, or CPA on a sensor. 

These events may register as a shift in sonic frequencies observed (Doppler shift), a 

sudden increase or decrease in volume of a sound source, or even a complete loss of a 

signal. These events are of such importance that the operator needs to be alerted 

immediately when one occurs. Initially, a dynamic event will be observed on the USV, 
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which will send a notification to the C2 module which will then generate the message for 

display through the HCI module.  

4. Contact Classification 

Assigning a classification to an underwater contact is a labor intensive process. 

The process begins at initial contact, where an operator attempts to make an early 

decision if the new acoustic contact is biologic or not biologic. This is important because 

it is a waste of time to track whales, dolphins, and schools of fish. Next, a human 

operator needs to decide if the contact is something on the surface, something in the air 

passing overhead, a fixed shore based facility, etc. Next, once it has been decided or 

determined that the contact is likely to be a submarine, it is then necessary to determine 

who it belongs to. As a matter of practice, the U.S. Navy prefers to minimize the amount 

of time spent tracking their own submarines, as presumably the submarines know where 

they are. There are multiple channels to do this, but usually a quick chat with the 

Submarine Operating Authority (SUBOPATH) will eliminate the possibility of 

expending wasted effort. SUBOPATH is responsible for knowing where friendly 

submarines are operating. Once a submarine is determined not to be an ally, the process 

of attribution begins. While this may still seem like a long list, and it is, there are only a 

few major variants of submarines that have been exported or developed elsewhere. The 

arduous task now becomes matching the signals observed to known or predicted 

signatures. 

This task is ripe for automation, but it requires the C2 module to have access to 

ACINT databases, SIGINT databases, and as many rich and varied data sources as is 

possible. Additionally, it requires quite a bit of experience and expertise in making 

accurate attribution decisions.  

5. Signal Processing 

Currently, signal processing is already heavily automated, with the acoustic 

processors on-board the MH-60R “Romeo” Seahawk and P-8A Poseidon performing 

much of the heavy lift. Using beamforming techniques, along with different filters and 

amplifiers, signal processors clean up a lot of the noise in the underwater environment 
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before it gets to the human operator. The human operator then fuses the information 

displayed with their knowledge of submarine TTPs and knowledge of what separates a 

sub from surface vessel or a whale. A sensor operator is looking for Doppler shifts in 

frequencies as well as bearing shifts to indicate some sort of dynamic event. These two 

particular events would usually correspond to a contact reaching its closet-point-of-

approach (CPA), or changing direction.  

6. Navigation 

When discussing navigation, it is important to be explicit because there is a 

decided difference between finding the shortest route between two points and 

successfully moving though the real world to get there. When most people think 

“navigation” they think the latter, but programmers can often mean the former. The 

procedure to find the shortest route between two points is not a trivial problem for 

computers to perform. In fact, some of these problems fall into the category of NP-Hard 

and NP-Complete problems. A well-known computationally challenging example is the 

traveling salesmen problem (TSP). The TSP is an optimization problem where one is 

given a list of cities and the distances between each pair, with the request to find the 

“cheapest” route [21]. Cheap may be in respect to time, distance, or some other 

optimization factor. This is a seemingly simple problem, but can become quite 

computationally intensive. To avoid the computational complexity issue, heuristics have 

been developed and there are known solutions to specific instances of a TSP. A USV is 

likely to face routing problems, especially in constrained waters like inland waterways 

and navigation channels.  

Autonomous navigation is a tough problem because it requires quite a bit of 

information to be seamlessly fused, the least of which is the geographic path, and 

appropriate decisions made. In addition to the route planning problem, navigation is not 

considered successful until an agent reaches their objective. This requires the agent to 

maneuver around any obstacles that might be in their way. There are many tools with 

which to detect objects, and the selection of those tools will depend on the tolerance for 

errors. Radar and sonar are great tools for getting gross estimates to targets, but there is 
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an inherent amount of imprecision in these sensors. This imprecision increases as one 

considers dynamic motion for both the interrogator and the interrogated. Lasers are great 

for obtaining very accurate distances, but their range is limited by line-of-sight as well as 

atmospheric obscurants like dust and moisture. GPS is another great tool that can provide 

high precision and accuracy, but it carries with it a significant vulnerability if it is the 

only instrument used in navigation. Additionally, GPS allows the user to resolve their 

position to a point with a small area of uncertainty of only a few yards/meters. 

Once an agent has accurately resolved their current position on the globe, and 

identified obstacles to avoid, the task of navigation is almost complete. Humans have 

developed complicated sets of rules to govern the safe and orderly conduct of maritime 

traffic, which are encoded in the following example publications: International Maritime 

Organization’s (IMO) Convention on the International Regulations for Preventing 

Collisions at Sea (COLREGs), the U.S. Coast Guard’s Navigation Rules and Regulations 

Handbook, which is commonly referred to as “the (maritime) rules of the road” that 

govern traffic inside U.S. territorial waters [22], and UNCLOS. This is not an exhaustive 

list but serves as a functional example. In order to increase the autonomy of a USV it is 

necessary that the vessel complies with the rule sets, understands when there are 

conflicting rules and can resolve contradictions and situations where other vessels are not 

following the rules.  

DARPA advertises the ACTUV/Sea Hunter as being able to comply with all these 

regulations, but aside from this example, most other commercial and military programs 

still lag behind in this area. In order to accomplish this feat, advanced artificial 

intelligence is required to be able to internalize the human rules, and make appropriate 

judgments to dictate movement decisions. This research area is still open for 

development and advancement. 

7. Formation Movement and Station Keeping 

Formations of vehicles provide advantages over loosely coupled or 

unsynchronized single unit operations. A formation, by its nature implies that vehicles are 

in closer proximity to each other than is considered normal or safe. The burden to define 
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what constitutes “normal” and “safe” is left to specific domains. Speaking in general, as 

the proximity between craft decreases, the probability of a collision increases. A collision 

at sea or in the air is considered a severe consequence due to the potential for loss of life 

or costly damage to equipment. Therefore, formation operations are considered to be 

higher risk evolutions than non-formation ops.  

The increase in risk from operating in formation is mitigated through close 

coordination and standardization of movements. Additionally, the risk is outweighed by 

the benefits of operating in formation. This assessment is task dependent and is not 

appropriate in all operating conditions. The benefits from operating in formation include: 

easier control of many units through clustering/abstraction, division of labor and 

responsibilities to other formation members (like navigation or communication), as well 

as mutual support and overlap of sensor coverage. The sub-task of maintaining a relative 

position with respect to a guide is known as station keeping. Station keeping is a 

concentration intensive task for humans due to the need to constantly adjust a vehicle’s 

movement in order to remain in a designated position. The intensity of this task is 

relieved by increasing the separation between individuals.  

By acknowledging the risks and the challenges of formation operations, 

employment options are increased. Operating USVs in formations allows for a single 

human to control more units than if they were to try to control them as individuals. This 

abstraction is what will allow the savings in manpower that is sought.  

F. THE USV MODULE  

An overarching design philosophy for the USV software is the Keep-It-Simple-

Stupid (KISS) principle. When software gets bloated, it becomes hard to maintain. The 

developer should ensure that the software that runs aboard the physical platform is kept to 

the essentials. The definition of “essential” is task specific, though for this problem the 

following are considered essential: propulsion and steering control, navigation and 

obstacle avoidance, communication link to control entity, and of course, sensor 

interfaces.  
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The advantages of adhering to this mentality are that it makes the job of 

maintaining a code base easier, and it simplifies the process of adding future 

functionality. A. Oliveira in his dissertation [5], titled conspicuously “Software 

Architecture for Autonomous Vehicles,” runs with this idea of simplicity. In the report, 

he provides a clean technical outline of the software for an unmanned surface vehicle for 

use in commercial ventures. Many of his ideas influence this work, as there were some 

critical insights that were beneficial to this project.  

Two reports of interest, [23] and [24], detail the efforts of multiple computer 

science students to formulate software requirements for a USV. In [23], a group of 

students taking a software methodology course offered by Dr. Berzins at the Naval 

Postgraduate School (NPS) approached three different ASW employment contexts: 

littoral operations, carrier strike group operations in deep water, and theater-wide ASW. 

The findings of the six groups that participated were condensed into a single set of 

requirements that represented a general set or requirements for an ASW USV. The 

following year, a second study as described in [24] tackled the same design challenge 

with a tighter scope. Two teams each, for four teams in total, worked on the maritime 

shield and protected passage sub-mission sets of carrier strike group operations in deep 

water. The requirements generated by the student groups were again consolidated. The 

designs were also briefed to experts in the field of ASW and the feedback of these experts 

as captured in the report. Both of these studies were sponsored by OPNAV.  

To avoid a duplication of effort, this thesis uses the feedback provided by the 

subject matter experts to inform the design of the C2 and HCI modules. It should be 

noted that none of the students that participated in the second study had any experience 

with ASW. With only a brief introduction to ASW, and in the reading material that is 

openly available online, the students were still able to design software architectures 

without any bias towards what a solution might look like. While their designs were 

insightful, given their lack of familiarity with the domain, there are some oversights. The 

following sections seek to address those shortcomings.  
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1. Hardware Interfaces 

First and foremost, [5] recommends keeping the software independent from the 

hardware and that the choices in components should allow for all current and future 

interfaces. This recommendation recognizes a key characteristic of software and 

autonomous systems—change. It is important that future operators have the ability to 

upgrade sensors, or to modify the code without breaking the entire system. To do this 

sensibly, one needs to select or specify hardware that has standardized external interfaces 

(ex: USB, IDE, RS232).  

2. Operating System 

Each USV, regardless of variant, will have an operating system (OS) loaded on it. 

In the absence of guidance relating to operating systems, a LINUX based operating 

system is recommended. In comparison to other operating systems, a Linux base allows 

for more customization, which has many benefits. First, a developer can trim parts of the 

OS out that are not needed for the operation of the USV. This adheres to the minimalist 

principle recommended in [5] while presenting a smaller attack surface towards a 

potential cyber-attack. An advantage to using the Linux OS is that it treats everything 

from a DVD player, a file folder, or a desktop monitor as a file. For the uninitiated, this is 

a benefit because sensors, actuators, as well as any number of devices can be addressed 

as a file by the file system. This is in contrast to other operating systems that treat these 

objects differently. Ideally, this ease of use will also allow for easier code maintenance.  

Different hull variations will have different equipment, capabilities, and 

limitations. Fundamentally, the software does not care about the differences in hardware, 

so long as an OS is chosen that allows for easy device driver configuration, also known 

as Plug-n-Play. On startup, the OS will poll all connected hardware, determine what is 

installed, load the appropriate device driver from a library, and then set its internal state 

to register the new limits. For instance, if the vessel is commanded to transit at 20 knots, 

but the hardware is incapable of supporting that speed, then an exception will be thrown 

and reported to the C2 module. 
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3. Outgoing Communications 

To keep things simple, there are only three categories of data that should originate 

from the USV. The first category is monitoring and control (MC), the second category is 

sensor streams (S2), and the third is group coordination (GC). Limited communication 

resources (time, bandwidth, frequencies) imply a need to keep the size and quantity of 

data packets to a minimum. The divide between MC and S2 is intended to separate the 

generally smaller sized but more numerous MC messages from the larger S2 streams. 

Also, it will be necessary to be selective about which USVs provide S2 data. The first 

two categories of data communication are transmitted by the USV back to the C2 module 

while the third category, GC, is only communicated between USV members operating in 

a group. These messages are used to de-conflict travel paths, share contact information, 

and to maintain formation stations.  

MC data will consist of all the administrative communications like 

acknowledgement of packets, sending of status and position reports, and warning 

notifications. Warning notifications are those messages that signal to the C2 module and 

the HCI module that there has been some error aboard the USV that requires attention. 

Some errors will only need to be logged; others can be taken care of between the C2 

module and USV, with the remainder requiring human intervention. Obviously, the 

messages that require human actions should be limited to only the most important, so as 

not to inundate the operator.  

Because of the nature of the S2 data, it is important to allocate a “thicker pipe” to 

this source. However, at no time can the MC data be neglected, so it must always have a 

dedicated link for each USV. A communications engineer will need to identify the most 

appropriate communication protocol that allows many units to realize virtually 

synchronous communications. However, lacking the expert guidance, the 

recommendation is to use a protocol similar to TCP for MC messages, and RTMP for S2 

streams. In the case of MC messages, it is important to know that the C2 module actually 

received the message, and a TCP like protocol will provide this verification. In the case 

that a message was not received, after some time-out period, the USV would resend the 

message until it received an acknowledgment. For the S2 streams, this kind of 
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verification is unneeded but not unwarranted. Use of RTMP allows for similar kinds of 

handshakes that occur with TCP, but it is optimized for pushing larger chunks of 

information. RTMP allows for the transmission of live broadcasts as well as previously 

recorded productions as specified in [25]. Streaming services like Livestream and 

YouTube use RTMP for their live streaming data [26]. RTMP allows for recording of the 

stream as well as each chunk of data has its own unique identifier that allows for a 

reconstruction of data.  

4. Incoming Communications 

The only pieces of data that should be coming to the USVs are 

instructions/commands from the C2 module. Instructions are sequences of commands 

that are issued to the USV for execution. Some instructions are to control the sensors and 

their settings, others will be for updating navigation waypoints, and still others will be 

used to dictate actions in the case of an emergency. Just like the outgoing 

communications, these messages will need to be decrypted before they can be delivered 

to the necessary element.   The instructions will still need some routing once aboard the 

USV, but is taken care of by the operating system.  

G. COMMAND AND CONTROL MODULE 

The Command and Control (C2) Module is the brains of the operation, working to 

ensure that there is a seamless connection between the human user and the USV. At times 

the C2 module operates as a traffic cop, directing information between the two parties, 

other times it needs to act as a synthetic member of the team. In situations where the 

human lacks in computational and logical reasoning, the C2 module attempts to 

overcome this shortcoming. Think of the C2 module as Mr. Data to the human operator 

Captain Picard from the popular television series Star Trek. 
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Figure 6.  C2 and HCI Modules 

1. Use Case 

This section refers to the red numbers on different components in Figure 6.  

Referring to the numbered components in Figure 6, the USV produces three types of 

messages as discussed previously in Section IV.F: MC, S2, and GC messages. GC 

messages are for peer USV communications and are not addressed to the C2 module. The 

other two message types are directed and addressed to the CS module and are received by 

the external antennas of the unit housing the C2 module at (1). From there, messages are 

routed to the appropriate servers labeled (2, 3, or 4) for follow on action. In some cases 

the information is simply stored for later retrieval while at other times it is processed 

further as directed by the HCI Server (5).  

Servers are divided into functional areas, and each server may have specialized 

applications that perform the duties assigned to them. Because this system uses 

standardized communications protocols, it is easy to add functionality later through the 

incorporation of additional servers and applications. The following sections will detail 

more specifically the duties of the Vehicle Information Server (2), the Sensor Stream 

Server (3), and the Data Server (4). 
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2. Vehicle Information Server (VIS) – (#2, Figure 6) 

This server’s primary responsibility is to store, combine, and forward all the MC 

messages. As illustrated in Figure 6, it has at least two databases, one for status updates, 

and one for position updates. Status updates are the messages that contain the regular 

“heartbeat” type information that conveys the health and operating modes of each USV. 

This information will be periodically supplied to the HCI module to refresh the state 

display of each USV controlled. Along with the status updates, MC messages will also 

contain updates on the positions of each USV. This information is stored in a separate 

database for easy retrieval to be supplied to the HCI module in order to refresh the 

displayed position of each unit.  

The VIS also contains multiple applications to assist with recognizing and 

handling incoming messages. One of these applications, the Notification Handler, scans 

incoming MC messages for any notifications from the USV that the human controllers 

need to respond to. These messages will include advisories on equipment status, cautions 

when nearing operation limits, and warnings for when there has been a critical 

malfunction like fires or flooding. 

To ensure proper information security, and repudiation, the VIS has a log file 

dedicated to recording the type and time of incoming messages before they get processed. 

In addition to this log file, every server will also have the required log files for proper 

forensic investigations should the system be attacked electronically. 

3. Sensor Stream Server (S2S) – (#3, Figure 6) 

The S2S server is primarily responsible for receiving the S2 messages from the 

USVs. Actions taken by the S2S will be directed by the human operators through the HCI 

module. The S2S will require significant data storage capabilities in order to store sensor 

streams for later replay or analysis. The Sensor Stream Handler application’s purpose is 

to prepare a live stream for storage and works with the USV to ensure all stream data is 

received properly.  
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4. Data Server (DS) – (#4, Figure 6) 

The DS, like the S2S, will also require significant data storage capabilities. The 

primary job of the DS is to store the commonly accessed, static data sets that are used by 

other applications on other servers. The most significant blocks of storage on this server 

include the intelligence libraries and the geographic information databases. The purpose 

of the intelligence libraries is to assist in the classification and identification of 

submerged contacts while the geographic information databases are used for route 

planning and USV positional awareness. The intelligence databases can either be resident 

on the DS or they could be remotely called from other servers aboard the host of the C2 

module. These intelligence libraries should include, but are certainly not limited to 

Acoustics Intelligence (ACINT) and Signals Intelligence (SIGINT), which includes 

emitter libraries (ELINT). Linking up all these libraries may pose classification issues 

that will need to be addressed.  

The DS also plays host to two related applications: a route planner, and a sensor 

analyzer. The route planner is invoked whenever the HCI module sends movement 

instructions to the USVs. The route planner consults the geographic databases and 

compares GIS standardized shapefiles to ensure the proposed route will not 

unintentionally violate any territorial boundaries or other geographic constraints imposed 

by operational intent, treaties, laws or other generally acceptable maritime regulations. If 

these conditions are satisfied, then movement commands will be generated and sent to the 

USVs, otherwise the application will fail-over to a human operator to handle the error 

condition.  

The sensor analyzer application is likely the best candidate to employ an AI agent, 

as this application should take in live or recorded sensor streams from the S2S and 

compare them to the intelligence libraries to see if any of the sensor observations matches 

or comes close to matching known contacts of interest. This is also a place to conduct 

new intelligence gathering on unique observations. 

H. HUMAN/COMPUTER INTERFACE (HCI) MODULE 

This section refers to items 5 through 8 in Figure 6.  



 53

1. The “Safe” Ratio 

Conventional wisdom and research would both suggest that a 3:1 ratio of humans 

to robots is a safe-ratio for maximizing mission performance while ensuring the physical 

safety of civilians and bystanders [4]. However, this ratio obviously does not scale well. 

To be able to control many units, the representations of those units, and the lists of data 

associated with them needs to be abstracted to be easily consumable with a single glance 

by an operator. Ideally it only takes a new watch stander a few moments to get a “grasp” 

on the situation. Certainly there will be pieces of information that are not displayed, that 

an off-going watch stander retains internally, and this kind of information is best shared 

at a face to face watch turnover. This is only one part of the problem for which there is 

already a partial solution if you use the combat information center found onboard every 

warship as an example. Their situation awareness system pulls data from multiple sources 

and presents it on multiple displays throughout the information center. Shared pieces of 

data are updated simultaneously for all users to see. In this way, a single ship can control 

the combat efforts of many different platforms, while also acting as the hub of 

information. 

2. Inspiration from Computer Gaming Industry 

Using a game engine optimized for the display and tracking of a large number of 

entities is ideal for use in this environment. A genre of popular computerized gaming that 

comes to mind are the real-time strategy (RTS) games in which multiple players can 

control hundreds of units simultaneously. All the human and AI players in the game can 

simultaneously, in real-time, send their game pieces to do battle with all the other players. 

In some cases, there can be hundreds or thousands of units all fighting each other. 

Granted, these interactions come down to simple game formulas that take into 

consideration attributes that each unit possess like firepower, armor, maneuverability, 

speed. The score that each unit has in this category is combined with all the other scores 

to give a probability that a unit will be damaged in an engagement, or if its weapons will 

hit accurately.  
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The RTS-style of game is designed and optimized for tracking and updating the 

positions and actions of hundreds of units in real-time. Suppose this off-the-shelf 

technology is leveraged to be able to control many drone units. The idea may seem 

laughable at first, but consider the issue at hand. A single controller can monitor the 

actions, in detail, of one unit very closely, and can monitor the actions of several (about 

six) fairly well. However, the ability for the human to control in any meaningful way all 

six of these platforms diminishes as the task complexity increases. It is therefore 

necessary to abstract “housekeeping” tasks away and shift that burden onto something 

else. Let the human worry about tactics and strategy, and in trying to make sense of 

Disorder and Chaos, let the computer worry about whether the human’s actions are 

possible or legal and how to actually execute them. The human should be the conductor 

to a symphony, not one of the musicians.  

In this way, I think that an RTS game engine is superbly suited to help with this 

abstraction problem. Select a game engine that is affordable to license, has an easy 

application programming interface (API) to work with, and has great support for different 

operating systems and hardware configurations. Also, select one that has a good “feel” to 

it whose controls are already intuitive with a minimal amount of training required to 

become functionally proficient. Then, with that as a base, add in models for USVs along 

with any needed animations that are all closely coupled to the real world platform. The 

goal here is that if it takes thirty seconds for a unit to deploy its towed array in real life- it 

takes the same amount of time in the virtual world. This is mostly trivial for a seasoned 

team of game programmers to manage. The real challenge becomes this: keeping the 

virtual world synched up with the real world, and then how to handle situations that are 

not easily modeled—like a stuck rudder or failure to receive a movement order. These 

situations would need to be dealt with, even in an abstracted sense, so that the operator 

may still have a good sense for what is going on out in the operation area. Another 

challenge is in actually converting the commands given in the game world to real-world 

instructions to be acted upon by a live robot.  
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3. Display Considerations  

There is a lingering question–if all the units have cameras, and radar, and an 

operator can effectively see “through the eyes” of the USV, why go through the trouble 

of creating a game world that is modeling the real world, in near real-time, when it would 

be easier for the operator to just “see” what there is to be seen? The answer is simply this: 

scale. The aforementioned display strategy works well for one vessel or a few…but 

beyond a certain point, it will become very demanding of communication resources. 

Considerable expansion of capabilities will be required to alleviate bottlenecks and 

constraints. These upgrades are expensive both in respect to time and money. Simply, this 

method will not work, and the game world offers many advantages.  

 Using a virtual representation of the battle space allows the user to view the 

battlespace from multiple angles. It also allows the overlay of helpful information, like 

predicted range of sensors displayed as rings or domes around a unit. Also, it can display 

geographic information and shapes as pulled from a common library and the shared 

tactical plot. A full 3D representation does not sacrifice the simplicity of a 2D top-down 

display; rather it can provide many advantages such as a moveable camera/point-of-view 

so that one may see the battlefield from multiple perspectives including the adversary’s 

perspective. If the user wanted a more traditional view, then they could always flatten the 

perspective to see it more like a map. 

Advances in wearable display technology can enhance SA further by more fully 

immersing the operator in the environment. This area is as yet unexplored and is ripe for 

further experimentation. Products like Oculus Rift and Microsoft Holo-Lens may offer 

the drone controller some unique display options. In Oculus, the user is not constrained to 

traditional monitor setups like dual or tri-displays and can experience full 360 degree 

field of view displays using software products like Virtual Desktop [27]. The tightest 

constraint is on graphics processor abilities and a designer’s imagination. Experimenting 

with what the latency is like between the game engine and the vessel, as well as the game 

and the C2 sources, and the game and updates on adversary positions will be required to 

assess effectiveness of this option. 
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I. ASSESSING VALUE 

Broadly speaking, when people discuss the value of a product or service, they are 

usually discussing its cost in relation to a competitor’s offerings, or perhaps other 

alternatives, to include making the object or performing the service themselves. This 

notion is therefore applicable to software and automated systems. There is one resource 

above all others that is nearly always insufficient in quantity and is non-renewable; this 

resource is, of course, time. This is not a groundbreaking revelation, but more a tautology 

of life that has such a strong gravitational pull that no idea can escape its force. Software 

and automation is often looked at to somehow save time, but in attempting to hopefully 

save some unknown quantity of future time, a finite and certain amount of current time 

must be expended in the process. Aside from time, money (dollars, Gold, and bitcoin) is 

another critically important resource in software development. While limited, money is 

thankfully renewable.  

Time and money are presented here, not as a remedial economics lesson, but as a 

way of setting up a common language and giving variables names. From these two 

variables, other composite resources can be constructed, for example: Manpower could 

be considered as a function of time and money. Manpower can be viewed as the 

combination of the amount of time spent on training as well as the total cost of a person’s 

training, salary, and benefits. Essentially, manpower is a two component vector, or tuple, 

that has a total training time, and a total cost. One could get more detailed and describe 

the nuances of retirement benefits and their monetary value or how all units of manpower 

should not be considered equal, as in the case of a plumber versus a fighter pilot, or how 

limits on force size and training capacity affect manpower, but for our purposes, we will  

concern ourselves with only the near-term costs. Other such composite values would be 

unit cost, which would be the total of the production costs and the maintenance costs, 

both paid for and pending, and failure cost, which is the total cost incurred if the unit was 

absent or failed to function. 

The valuation of an object should also consider non-tangible values, like the 

amount of power or influence that can exerted. For example, a submarine wields some 

non-trivial amount of influence on local politics and international affairs in the region 
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that it is operating in. A maritime state may leverage its physical submarine asset to 

generate power or influence, or to gain monetary concessions from another state. Unlike 

other forms of value, it is difficult to place a monetary or temporal value on 

Power/Influence, as they could evaporate quickly or have long reaching effects.  

In a nutshell, the acquisitions officer or program executive office needs to 

consider tangible resources like time and money, and intangible resources like power and 

influence when trying to decide to purchase a certain USV or not. There are costs 

associated with the development, testing, fielding, and maintenance of a system that 

needs to be weighed against the cost or gain associated with using more people and then 

balance against the potential loss of power and influence with an adversary. 
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V. ADDITIONAL CONSIDERATIONS 

The focus of this chapter is to discuss those considerations that are important and 

must be included into the design of a USV, and are best highlighted separate from the 

core of the USV design.  

A. SECURITY 

This section address security concerns in more detail to highlight particular 

vulnerabilities that a USV might have and should be addressed early in the development 

process. Security in all of its forms is of the utmost importance to an autonomous system 

designed to operate outside the direct line-of-sight control of a human. Security needs to 

be “baked in” from the very beginning so that it works integrally with all the other 

systems. Too often in software procurement is security a “bolt-on” addition that gets 

added during later design spirals. While it is never too late to address security, it is unfair 

to say that some security is better than no security. Security that prevents the 

accomplishment of the mission is a waste, though security is frequently sacrificed in the 

name of mission accomplishment with the flawed hope of “security through obscurity.” 

This is an untenable position, and it is better to assume that systems are always being 

attacked than the alternative.   

1. Cyber / Electronic  

It would not be an exaggeration to state that hundreds of books have been written 

on the topic of computer security, particularly cyber-physical and information security. 

Broadly speaking, computer security covers a very wide range of topics that each has 

quite a bit of depth to them and includes topics such as: network, storage, and application 

security. This thesis cannot hope to do these topics justice, but aims to increase the 

reader’s sensitivity towards critical cyber vulnerabilities.  

In the current generation of cyber-physical platforms, the major goal has been to 

field a platform that provides value added to the warfighter. While going forward, this 

will continue to be the case; but the old paradigm of “just get it working” will not stand. 
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What our adversaries may lack in firepower or lethality, they make up for in cyber-

warfare skills. No system is safe, and even without a network connection a system is still 

vulnerable; add in a network connection, or some sort of external communication link, 

and the problem space expands. It is worth remembering that security and access are 

diametrically opposed; one may have all of one and none of the other or else a 

compromise must be met. 

When discussing cyber security the concept of an “attack surface” comes up. To 

visualize, imagine a three dimensional cube with six faces. As any dimension of the cube 

is modified, the surface area will similarly grow or shrink depending on the change. In 

the cyber world, a computer system could have multiple software layers or “faces,” with 

each one with its own surface area. Changes to one surface may cause a change in 

another depending on how tightly coupled they are. As a system increases its external 

connections, applications, and even lines of code in a program, it exposes that system to 

greater risks through known and unknown vulnerabilities—otherwise known as growing 

the attack surface. The target that a hacker has to hit has become larger, and the job for 

the defender has become tougher because of the increased area to be defended. When 

designing a cyber-physical system like a USV and its supporting infrastructure, careful 

attention needs to be applied to how big the attack surface is becoming. At some point, 

the surface area will become indefensible, and there will be multiple leaks that a defender 

has no chance of combating. When this occurs, it is important to have a robust 

information security plan. 

In classic military planning, the entrenched defender is assumed to have a nearly 

three-to-one advantage over an attacker. This defensive multiplier is granted due to the 

defender’s knowledge of the local terrain and with the defensive perimeter. Also, the 

defender does not need to exert the same amount of effort as an attacker must to 

overcome the entrenched positions. This model does not apply to cyber, as the attacker 

only needs to find a single “chink” in the armor of the defender and they may then be 

able to gain full access to the defender’s system. For safety systems in aircraft, like 

ejection seats, the minimum acceptable failure rate is zero—the system needs to work 

correctly the first time, every time, or else it is defective and is replaced. This is 
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essentially the problem facing the defender, which needs to stop the attacker at the first 

sign of aggression, every time. When the attack surface increases, this becomes less and 

less attainable.  

The recommendation to the designer and stakeholders is this: install the hardware 

and software needed to complete the mission and nothing more. Then, with that initial 

configuration, trim all remaining “fat” from the software by removing unneeded 

functionality. Rest assured, if a certain function is required at a later date, it can be 

installed, but there is no need to have it until then. Consider this simple example: unless 

one is an avid fan of a gaming application that may have come preinstalled on their 

system, such as Microsoft’s Solitaire, then consideration should be given to removing the 

application if reducing the attack surface of their home system is desired. This is a simple 

example to illustrate the point, but consider such programs like Skype and Google Maps 

that require access to onboard cameras and location data to “function properly.” These 

types of exceptions open a user up to an actor that seeks to install malicious software that 

may pose as one of these legitimate applications. Because the permission has already 

been granted, the operating system may not detect the deception and could allow the 

malicious program to run with access to video and locational data, which should be 

private. 

2. Information / Data 

As the saying goes “knowledge is power;” applied to today’s world, knowledge is 

derived from information and roughly equates to information access. To be clear, 

consider the term “knowledge” to refer to an individual’s interpretation of the world 

around them influenced by their experiences, biology, and personality. A helpful 

explanation is found on [28] that states that “data is/are the facts of the world” or a 

“description of the world.” Data is therefore constantly present but not always recorded 

or observed. According to [28] information is then data captured. The three terms, 

knowledge, information, and data, are often used interchangeably and therefore, it is 

important to make the distinction going forward. 
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The concept of data states is widely known in information security; it is worth 

reviewing here with some common examples:  

 Data-at-rest: information which is stored on some form of storage media, 
to include: hard-disk drives, optical disks (CD, DVD), and removable 
drives like USB thumb drives. To be more precise, it is information that is 
stored in non-volatile memory.  

 Data-in-transit: information that is being transmitted from non-volatile 
memory into volatile memory like random access memory (RAM), or is 
being transmitted across a network connection.  

 Data-in-use: information that is stored in volatile memory, and is being 
used by an application, thread, or process. 

These data states are illustrated in Figure 7.  

 

Figure 7.  Data States 

Information security is concerned with protecting information at each one of these 

states. The success of security measures depends on the state, as each one has unique 

challenges and vulnerabilities. The most difficult state to protect is data-in-use because it 

usually resides in RAM and is typically un-encrypted. It is functionally impossible to use 

encrypted data because at some point, it must be de-encrypted to be able to view or 
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modify. This information is usually the initial target of attackers as it is “on the surface” 

and with the right tools can be easily accessed. However, this often requires physical 

access to the machine with the information, as once it leaves the application or RAM, it 

will be encrypted.  

Data-in-transit is vulnerable to interception, by any number of man-in-the-middle 

type attacks or spoofing. If one wants to ensure the security of the information, then it 

must be encrypted, otherwise it is as good as if the hacker was invited onto the network. 

However, encryption is not free and comes at price. First, many encryption algorithms 

use a technique called padding to ensure chunks of data are of the same size. Second, it 

takes a finite amount of time to run the encryption/de-encryption algorithm so that there 

is time before transmission to “package” the message, and then time on the receiver end 

to “unpack” the message from the encryption. The time intervals required for this process 

are small (microseconds), though these fractions of seconds compound quickly for a large 

messages.  

Data-at-rest is the most common state the average computer user thinks of when 

discussing information security concerns. The reasoning is simple – everyone knows that 

information is stored on or in something, though this understanding may recede with the 

growing prevalence of the “cloud.” As an aside – “the cloud” is no different than storing 

files on a shared-drive, just the implementation is slightly different and the mechanisms 

are more obscured. Given this understanding, it is fairly intuitive to understand the desire 

to protect data while it “just sits there.” Much like a file cabinet in an office that contains 

sensitive files; one does not want just anybody coming in and browsing through the files. 

Encryption for data-at-rest does not add any more overhead from encrypting data-in-

transit, if the files are stored directly. Otherwise, there will be a slight delay before 

writing so that the files may be encrypted and one can expect that files sizes will be 

slightly larger than the same file in plaintext. The primary vulnerabilities for data-at-rest 

are theft and destruction. Files written to storage media can be copied to another volume 

and then an attacker can attempt to crack them at leisure. Because these files are non-

volatile, and are not being transmitted, the temporal aspect in capturing this type of 

information is diminished.  



 64

How far into a system an adversary can get will determine how much information 

they are able to view and subsequently steal. This is a real risk for an autonomous vehicle 

because by design, it needs external communication ports and will likely be storing some 

amount of data onboard for further analysis or processing. While the risk of interception 

is ever present, it can be mitigated through encryption, with the understanding that it 

comes at a cost. Additionally, measures can be taken to secure the information that 

resides on the platform. However, the best way to prevent the adversary from gaining 

information is for it not to be there. The designer in conjunction with the stakeholders 

needs to consider carefully what information is gathered and stored aboard the vessel. 

Given sufficient time and resources, a determined adversary will be able to crack most 

security and encryption protocols, so the goal is to delay them as long as possible to 

ensure that whatever information they do recover is sufficiently old as to not provide a 

tactical or strategic advantage, to include gathering information on the collection 

mechanisms or processes.  

In short, the following is recommended: Autonomous vehicles, especially those at 

risk for isolation and therefore capture, should follow computer security industry good 

practices to prevent the interception and modification of information during any state of 

use. Failing that, it is imperative that robust checks are performed on mission critical 

information to ensure authenticity and non-repudiation.  

3. Communications (COMSEC) 

This USV will not need to use voice circuits, but it will need to transmit/receive 

information on data circuits. The goal of this USV design is to keep all the classified 

sources of data aboard the mother ship/base station and not on the individual USVs; this 

allows them to be more expendable and alleviates some of the concerns surrounding an 

adversarial capture of one of these units. However, even if the data itself is unclassified, 

there is no need for an adversary to be able to see it plainly. Therefore, most data going to 

and from the USV should be encrypted compatible with the designated classification 

level required for the type of data being transmitted.  
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Special consideration is required in the design process to ensure that the USV’s 

communication systems will be compliant with standing COMSEC policy. Additionally, 

it will be necessary to consider how to implement the ability to “zero-ize”/erase onboard 

communications gear to ensure the encryption keys do not become compromised by an 

adversary. This level of encryption protects data while in transit, but it does come at the 

price of increased amounts of data needing to be transmitted. Most encryption algorithms 

carry a small data overhead depending on how they divide data into chunks. While this 

overhead is generally small for Internet applications, it may be more restrictive for 

vessels that have limited bandwidth and connectivity.  

4. Operational 

Operational security (OPSEC) is a set of security concerns that can impact the 

successful completion of a mission. The most well-known phrase in the OPSEC 

community is, “Lose Lips Sink Ships,” coined during WW2 to remind service members 

and citizens to be mindful of their discussions about sensitive information. This notion 

carries over to the electromagnetic spectrum as one can never be too sure of who is 

listening to their electronic conversations. This is germane because the USVs in this 

system are not fully autonomous and will require periodic communications back to a 

controlling station.  

A radio frequency broadcast signal in the UHF/VHF band is often transmitted 

Omni-directionally and therefore is subject to intercept by any receiver in the line-of-

sight of the radio wave. It is possible to use beamforming techniques to make a 

transmission more directional, though it then becomes important that the intended 

receiver is oriented correctly to pick up the transmission. This is often difficult to achieve 

with moving platforms as it requires both platforms to be synchronized with each other, a 

problem whose difficulty increases greatly with an increase in degrees of freedom of 

movement. RF data transmission is useful for LOS operations, but is often more costly 

and challenging for over-the-horizon (OTH) transmissions. Even if the content of the 

transmissions is encrypted, that fact that a station is transmitting provides valuable 

intelligence to an adversary. For example, if an adversary is monitoring a region and 
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notices an absence of visible maritime traffic, but it sees a spike in RF transmissions from 

this same region, then a reasonable conclusion is that there is something there that is 

either camouflaged or is too small to be ordinarily detected.  

To alleviate the concerns with LOS communication one may choose to use a 

lower frequency signal that can bounce through the atmosphere or a highly directional 

transmitter may be chosen. Often, this transmitter comes in the form of a satellite antenna 

that is oriented to a satellite in orbit. While offering more security, it is not without its 

drawbacks including limited quantities of communication slots available for assignment. 

Just because a unit wants to use a satellite, does not mean the resources will be made 

available to them for their use. Another alternative to RF transmissions is an acoustic 

modem though they are still subject to counter detection by a submerged listening 

platform.  

5. Physical  

The physical security and safety of the USV system is important to the safe and 

effective employment of this system. With the exception of ACTUV/Sea Hunter, most 

USVs are quite small in comparison to warships. This small size makes then vulnerable 

to harassment, tampering, theft, and destruction by virtually every manned platform. 

While this issue could be dismissed as an engineering or policy issue, it is fundamentally 

a software issue as well. Upon detection of some sort of disruption event, the USV needs 

to take immediate action to ensure the security of its onboard data, encryption keys, and 

overall safe operation to include the notification of the C2 module that the USV is being 

assaulted.  

a. Anti-Theft / Anti-Tamper 

The relatively small size of most USVs makes them vulnerable to threats that 

would not concern most other warships. Specifically, because of their size, they are more 

likely to be stolen by those seeking to sell the platform on a black-market, pilfer parts, or 

vandalize it for the sake of amusement [29]. Additionally, these platforms would be more 

at risk for detainment and possible physical intrusion attempts by an adversary. 
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Therefore, it is necessary for the USV to detect when it is being interfered with and take 

appropriate actions.  

A possible scenario is that an adversary vessel comes upon one of the USVs and 

then decides to bring it aboard in an attempt to sabotage the USV. The easiest way to 

detect this kind of tampering would be to have a temperature probe on the bottom of the 

USV that if it should be exposed to free air would register it has been removed from 

water. In case the USV got flipped over by wave action, then onboard acceleration 

sensors should have detected the roll movement and reset the Out-of-water timer.  

In the same scenario, if the adversary attempts to open the outer shell of the USV 

without proper authorization, then it should register this and immediately delete all log 

files, encryption keys, and send a transmission to the C2 module that it has been captured. 

These scenarios highlight a need to have a robust physical intrusion detection system that 

will preemptively clear all stored data, the assumption is that it is better to have to 

recreate data from a backup then to allow data to fall into an adversary’s possession.  

b. Legal Issues 

Rhetorical question: Is a USV considered a sovereign military vessel, subject to 

all the rights and privileges bestowed upon active commissioned warships, or is it simply 

a piece of property, like a wrench or a rifle? Does this change when a nation commissions 

a USV into its roster?  A partial answer to this question is found in [30], which are the 

remarks by Deputy Secretary of Defense Bob Work. In his remarks, he suggests that the 

Navy should consider vehicles like the Sea Hunter to be “warships” not “drones.” One 

can quibble over the semantics, but the idea here is that a warship is a “warship” whether 

it has a crew or not. If this is the case, then one can speculate that the laws that apply to 

crewed warships should also apply to non-crewed warships.  

This leads to a troubling thought. If an unmanned vehicle is considered a 

“warship,” then will the United States go to war or retaliate against another state should 

they sink or otherwise damage the vessel? The author posed this question  in an email to 

the notable CAPT Wayne Hughes, author of Fleet Tactics and Costal Combat, who was 
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quick to point out that asking what a response would be is the wrong question. Instead he 

suggested the following:  

Instead of saying, “what would be our likely response” the first question is 
“what are our choices?” Not the choices listed [interpret attack on the 
USV as an attack on a sovereign warship, treat attack like vandalism, or 
ignore the attack] which are wannabes. First comes what we can do, 
second comes what we should do. [31] 

The resolution to this question is important for designers, because it will influence 

aspects of the design, particularly evasion and self-defense. If the vessel is a considered a 

“warship,” then it needs to take all reasonable actions to avoid capture and to defend its 

self. However, where does one draw the line on defense, how hard should the USV fight 

for its survival or freedom? These are questions better left to other professions to answer.  

B. MANPOWER 

Manpower represents one of the largest variable costs associated with 

implementing this software and probably one of the hardest to accurately predict. The 

software, once developed, has a negligible reproduction cost, though a non-trivial one-

time setup cost will apply. Code maintenance will also be another variable cost, though if 

managed properly will be predictable. To make this software effective, it needs to be able 

to save the customer money that it would use on other assets. It is my belief that this 

system could save thousands of dollars that are normally spent on expending non-

reusable sonobuoys or operating maritime air assets. Ideally, this system would also 

allow you to save on the amount of people being used to operate and maintain the system 

or enable better ASW coverage with the same number of people. This becomes a sticking 

point. 

In Human-Robot Interactions in Future Military Operations, there are two essays, 

[4] and [32], that touch at the heart of this matter that almost appear to be both 

complimentary and contradictory. In the first essay, titled The Safe Human-Robot Ratio, 

the authors propose a ratio they believe provides the minimum number of people to 

operate an unmanned system and still be safe. This ratio is defined as Nh = Nv + Np + 1, 

or plainly: The number of humans (Nh) required to safely control an unmanned system is 
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equal to the number of vehicles (Nv) plus the number of payloads (Np) plus one [5]. The 

authors use a lone, single-payload UAV as their base example. This platform, by their 

ratio would require three humans to safely operate. During their research they saw that 

most unmanned systems break down human tasks into three major roles: pilot, mission 

specialist, and flight director/safety observer. The pilot’s goal was primarily to ensure 

that the aircraft did not collide with any objects and to be in a position that allowed the 

Specialist to use their sensor to observe the mission area. The director was responsible for 

keeping overall situational awareness of the larger mission, and to integrate what the 

specialist was seeing and what the pilot was seeing.  

To apply the above equation to this project requires a little more refinement. 

Specifically, the constitution of a payload is left undefined, and so for our purposes let us 

define it. Conservatively, a payload could be each of the major sensor packages, so that 

would be sonar, radar, FLIR. Less conservatively, one could separate the sensors into 

broad areas of Acoustic, and Non-Acoustic, and then assume that the operator would not 

be focusing on FLIR at the same time as radar, and therefore one could safely combine 

those activities. At this point, the total number of payloads is between two and three. 

Now, applied to a squadron of say 16 USVs, that would be sixteen (16) USVs plus thirty-

two (32) payloads (2 x 16) plus one (1), results in a manpower requirement of forty-nine 

(49). That is unacceptable, as that is about one-sixth the crew complement of a destroyer. 

Clearly the equation does not scale well if one is considering employing multiple USVs.  

In attempt to minimize this number a developer may suggest that automation is 

the answer—that it is necessary to “increase the level of automation” to be able to 

perform more tasks that would have been done by a human. This is fair reasoning, but it 

can be problematic. First, one needs to understand how further automation is achieved, 

and likely, in the case of robots and USVs, the answer comes in the form of Artificial 

Intelligence. However, AI is not the panacea that one might make it out to be, as 

previously asserted in earlier chapters, AI is nothing more than fancy software. At the 

base level it is operating on a set of rules that human developers defined, or through other 

software, allowed the AI agent to define. It should be obvious that this path inherently 
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leads to errors, some of which may be quite insidious and not manifest under normal test 

and evaluation conditions.  

The essay presented in [32], Lessons Learned from Human-Robot Interactions on 

the Ground and in the Air, discusses how automation is not the answer for reducing the 

amount of people in the loop. The salient point in this discussion is that it is flawed 

reasoning to believe that removing the human from “the loop” will result in a decrease in 

errors. Certainly errors related to human carelessness or incompetence may be avoided, 

only to be replaced by a different set of problems. This problem set occurs when humans 

have been removed from the decision making loop and are cast into a supervisory role 

but are then required to intervene and take control of the USV during certain error states, 

like an emergency. When this occurs, the human’s like of tacit situational awareness 

means that the human is reacting far slower than they would have been if they had been 

in control all along.  

This argument complements another argument from the first essay of the same 

document in which the authors of the safety ratio propose that seeing the problem of 

automation as being similar to an Air-Traffic Control (ATC) scenario is fallacious. The 

reasoning is that while an ATC may have many aircraft under their control, there is a 

pilot-in-command of each aircraft who is in charge of dealing with local abnormal 

conditions, to include emergency procedures. It is not as if the ATC will suddenly take 

remote control of one of the aircraft and handle nuanced execution of procedures.  

I present these points of view for the audience’s consideration, as they 

fundamentally impact how many humans must be employed to operate multiple USVs. 

My argument is mostly technical in nature, that it is possible to present information 

necessary to execute the control of USV from a limited number of human interface 

points. However, the determination as to whether or not that is a good idea will require 

prototyping and testing to assess safety and performance under abnormal conditions.  

C. TRUST 

Trust is a rather broad issue when discussing automated systems, and is a current 

philosophical question that the robotics community is wrestling with. Trust comes in 
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many forms: explicit trust is usually defined formally through a contract, which may be 

physical or verbal, and the responsibilities are clearly delineated. Implicit trust derives 

from explicit trust, in the way that we trust doctors or pilots. We are not party to their 

actual qualifications, but we have implied and imparted trust to them based on their 

station. In all situations trust is usually earned through the demonstration of some set of 

actions that establishes confidence, but it can be quickly voided when decisions are made 

that are counter to the understood norms. For instance, the trust in an airline pilot is 

irrevocably lost if the pilot shows up to work drunk. Loss of confidence in professionals 

is not solely confined to workplace incidents. The errors in judgment that professionals 

make while away from the office also can cause a loss of trust. Professionals are expected 

to behave a certain way both on and off duty, and when these expectations are not met, 

their professional judgment abilities are called into question. Once this erosion begins, it 

is hard to recover. 

 How then is this applicable to autonomous systems and robotics? First, through 

test and evaluation and eventually acceptance testing, we establish confidence that 

software will work correctly most of time, and that it will accurately report when it is not 

working correctly. However, to ask a rhetorical question: what happens if the software 

does not recognize when it is wrong, or fails to report the situation? Can you continue to 

trust the software? Do you fire it, or revoke its license? Obviously it is hard to hold 

software accountable, so the axe usually falls on a programmer or some other poor soul 

involved in the development. Yet, in a system that is designed to go over the horizon and 

to meet the enemy, we are placing a great deal of trust in the system in that it is reporting 

back correctly. Also, we are putting a lot of faith in the programming that it can recognize 

a fault, or when it is tampered with. However, this thought is not justified, as it is nearly 

impossible for a machine to recognize that it has changed, and it is functionally 

impossible to test every possible state a piece of complex software could be in.  

D. MAINTENANCE AND UPKEEP 

Designing with upkeep and maintenance, to include upgrades, in mind is part of a 

fundamental course in programming. Most instructors who teach programming classes 
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will insist that their students diligently make comments about their code, and that even 

without the comments, names of modules, functions, and variables should all be easily 

understood. The idea is to have the code “talk” to another programmer without needing 

the original designer present to represent their code. The concepts of object oriented 

programming, along with modularity, are fundamental learning points in programming. 

In fact, as projects increase in size and complexity, it becomes imperative that the design 

team ensures that their work remains modular. The driver behind these ideas is in a word: 

change. Requirements frequently change, APIs change, and even the nature of the 

problem may change. Therefore, it is important to begin the design process with this idea 

in mind—while the design team may be the creators; they certainly will not be the last 

hands on the project.  

When assessing the total cost of ownership of an unmanned system, the 

consideration for software upkeep must be addressed. This aspect of software is often the 

part of the iceberg that sits below the water, as it can cost a company half of the 

procurement costs in maintenance over the life cycle of the software. Intel in [33], 

estimates that over the course of supporting a software product, a 70% to 85% of the 

TCO will be absorbed as support costs. Support includes patching, training, and upgrades 

to the software system.  

E. ARGUMENTS AGAINST AUTOMATION 

There is an idiom that is apropos to automation-just because something can be 

done, does not mean it should be done. There are multiple instances where automation 

could assist the work that a human is doing, or could replace the human entirely. 

However, there is a price paid in removing the human from the equation. 

Humans are inherently lazy, it is not that we mean or desire to be slothful; it is 

just that we have a tendency or predilection for procrastination and complacency. By 

allowing a computer to perform certain tasks in a combat environment, a sailor may 

become complacent with the output of the machine and fail to be on guard for errors. For 

example, in the case of automated target tracking, when inexperienced crew members 

rely too heavily on the computer, their practiced skills atrophy and they become 
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distracted by other tasks. This distraction can mean the difference between detecting a 

submarine, and allowing the submarine to pass undetected to sink the HVU. 

As we allow machines to perform more and more tasks for us, we cede control 

over events and risk becoming passengers to our AI drivers. In combat, mistakes can be 

fatal, and overly relying upon machines and software could be deadly. The victor of the 

next major conflict will be the one who did not overly restrict their machines, but also did 

not allow their human assets to become too reliant on those machines. Humans require 

food, water, and shelter to survive; creative outlets and purpose to thrive [34]. An 

autonomous system requires information for both. Restrict the information flow and you 

starve the automaton.  
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VI. FUTURE WORKS AND RECOMMENDATIONS 

During the course of my research, I discovered many topics that could be 

interesting for follow on research. It is with regret that I did not have time to pursue every 

avenue and so I leave these bread crumbs for fellow scholars.  

A. FUTURE WORK 

1. Operating in Fully Degraded Communications Environments 

One of the primary assumptions made during this design was that the proposed 

USV system would be operating in a communications environment that was either fully- 

permissive up to partially-degraded. The over-arching assumption being that the U.S. 

would have the same control over the EM spectrum that we have had in previous 

confrontations. Unfortunately, this is an unsafe assumption to make when considering 

peer or near-peer adversaries. The People’s Republic of China is the country to most 

recently demonstrate an (anti-satellite) ASAT capability and planners should consider 

that they might freely export that technology to other countries. With ASAT capability, 

one cannot assume that they will be able to use GPS and other satellite based 

communications during a confrontation with these states. This has major implications for 

a USV that relies on GPS, as they could become an effective mission-casualty at the 

opening of hostilities. Further research is necessary to determine backup systems that can 

be installed which do not overly encumber the platform. One recommendation is to use 

an inertial navigation system, but a limitation with these systems is that they periodically 

need to calibrate off a fixed position. Radar could be used to establish radar lines of 

bearing if in close proximity to the coastline, and other OTH transmissions like LORAN 

have been used in the past to help triangulation efforts. A significant vulnerability for this 

platform, and the U.S. military as whole, is the over-reliance on GPS. Manned platforms 

would be superior in this regard as they can fall back to paper charts if necessary, though 

this too is becoming increasingly rare skill. Alternatives are necessary if the goal is to use 

these systems the day after the GPS has been disrupted. 
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2. Sense Making for ASW 

While exploring the material and the theory behind the Cynefin model, and 

learning about organizational and operational complexity it occurred to the author that 

applying the Cynefin model and other products from Creative-Edge may yield some 

valuable insights into ASW. ASW is a domain that has atrophied and is slowly resurging 

in Navy circles; however it would be beneficial to the organization to capture some of the 

cognitive processes that go into fighting submarines that could improve the warfare area 

in general, and enable smarter use of autonomous systems in particular. 

3. Classification Issues 

My proposed model includes pulling from the ACINT and SIGINT databases, 

however to combine these abilities onto one system may make the system too classified 

for operational use. The ideal mission system will have a classification of no higher than 

SECRET. The basis for this recommendation is that higher classification level will make 

the USV control system inaccessible to a large segment of the shipboard workforce. 

Ultimately the USV module, the C2 module, and the HCI module do not require 

knowledge on collection methods and sources, just the signatures. Coordination with 

specialists in this field should help the designer avoid difficulty in this area. 

4. User Interface Prototyping and Use Study 

I made the claim that the Human Computer Interface or User Interface portion of 

this system was one of the most critical components. The C2 module is certainly the 

brains of the operation, but to the warfighter—it is and should be transparent. This makes 

the HCI module the heart of the design. The only way for an operator to truly be able to 

control multiple assets, is to have good situational awareness of where all their assets are. 

This is impossible to accomplish with a muddled, non-intuitive, non-user friendly 

interface. If the button-pusher has to think more about what sequence of commands are 

that need to be issued versus just commanding, then the whole enterprise is lost and will 

quickly sap value. 
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To this end, it is necessary to conduct a task analysis and rapid prototyping of 

some UI mockups to start getting instant feedback from the end user. The closer the 

controls can mimic triple-A video game design, the more intuitive the controls will be to 

a user, and the payoffs will be noticeable: quicker time to train, minimized error rate, 

higher situational awareness. However, the study must be commissioned and performed 

to start capturing those data points. 

5. Valuation Functions 

Chapter IV, Section I, discussed assessing the value added by an autonomous 

system. The author initially began work on developing an equation / process to try to 

assign a measure of value to dissimilar UMS. One of the chief difficulties of this 

approach was how to judge the value, other than monetary, of two different UMS 

performing the same mission, but in different domains. For example, how does one 

compare a USV for ASW against a UAV for ASW? The stakeholder wants to know what 

system they should invest in, and presumably they have an idea as to which domain they 

would prefer. Considering their needs, it could boil down to “it depends.” Consider a 

more likely scenario: two USVs that are designed to perform the same mission, 

developed by two different manufacturers and are roughly the same cost…which does 

one choose, which is better? The answer would initially be “it depends” but one could 

establish a set of benchmarks for the systems to tackle, and then depending on the result, 

choose the best. Short of a decisive victor, it comes down to a qualitative or “gut” 

decision. Ultimately, the idea was scrapped because it gets intractable quick, with not a 

lot of “value added.” A consumer considering a car purchase is likely to buy from the 

manufacturer that they have established a familiarity with over one they have not; the 

exception being: a less familiar alternative is so greatly superior in quality or price as it 

would be illogical to choose otherwise. The conclusion was that in the case of a clear 

victor, no equation would help, and in the case where it is inconclusive, then a quasi-

scientific numerical approach would not sway the gut of a stakeholder. 
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6. USV Group Leadership 

In human organizations with hierarchal structures a leader usually does not have 

direct communication with more than three to six individuals. While a single leader may 

be responsible for hundreds or thousands of people, that leader usually does not have 

meaningful direct contact any more than the three to six. As previously discussed, this is 

likely due to limits on human capabilities for multi-tasking. This type of organization 

scales pretty well as demonstrated by military organizations. The question becomes, does 

an organization like this help when dealing with multiple USVs.  

The benefits to selecting a single USV to be the leader of multiple USVs, like in a 

formation, are many. First, selecting a single unit to be a leader allows the human 

operator to abstract away the rest of the units and then deal with a grouping collectively 

by issuing instructions to a single unit. That unit then has the burden of parceling up 

instructions—a problematic situation. However, if the leader acted as a relay, it could 

communicate with units that were a further distance from the main communications node 

and act as a place for those units to store and forward messages back to the main entity.  

Other issues also arise such as how do you initially select a lead? Does the lead 

remain static? What happens if the leader can no longer remain with the group or is 

destroyed? 

B. CLOSING 

Unmanned systems of all shapes and sizes are the new normal of modern warfare. 

As a country, we can ill afford to lose the advantages we have in unmanned and 

autonomous systems, and we must strive to close the gaps between us and our 

competitors. Through this work, it has been the motivation to help support those who 

develop the next generation of unmanned vehicles for the war-fighter. It is the author’s 

hope that other scholars will pick up where he left of, and continue to tease out ways of 

achieving the ultimate goal of many unmanned vehicles under the control of a single 

human.  
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